
31 A Short Introduction to Noise  
v1.9– June 2021 

Prerequisite knowledge required: Ohm and Kirchhoff’s Laws, Op-Amps, Electrons in Solids 

31.1 Introduction 
Noise (by which I mean any unwanted signal that appears superimposed on a wanted signal) is 

always present in electronic systems: all real electronic circuits and components produce noise and 

all signals in the real world contain some amount of added noise (see figure below).  While it can 

never be entirely removed, it can be quantified and minimised, and the techniques required to do 

this are vital knowledge for any engineer wanting to get the best performance from circuits. 

 

Figure 31.1  Typical waveforms of noise, ideal sinusoidal signal, and real-world sinusoidal signal 

Noise can be divided into three main categories depending on where it comes from:  

1. Intrinsic noise: noise generated within the elements of the circuit due to the random motion 
of the charge carriers. 

2. Extrinsic noise: noise generated externally to the circuit or system under consideration and 
coupled into the circuit usually through electric or magnetic fields. 

3. Quantisation noise: noise introduced onto a signal due to the operation of an analogue-to-
digital converter. 

We’ll be considering all three types of noise in this chapter: finding out how the noise arises, how to 

minimise the noise levels in a circuit, how to treat noise as a mathematical signal, and how to 

measure the noise levels in a circuit. 

31.2 Some preliminary statistics: Gaussian and white noise 
(Note that this section is not essential for understanding of the rest of this chapter.  If you haven’t 

studied statistics before and find this hard-going, please feel free to jump ahead to the next section.) 

The probability density function p(x) of a statistical variable evaluated at x is a measure of how likely 

the variable is to have a value close to x.  To define it more exactly: the probability of any sample of 

Pure noise waveform

Ideal, noise-free sinusoidal signal waveform

Real-world sinusoidal signal with noise



the noise lying between the values of x and x + dx where dx is a small range is p(x)dx, and for a wider 

range, the probability of x lying between a and b is: 

 ( ) ( )  = 
b

a

prob a x b p x dx   (31.1) 

It follows that the integral of any probability density function from minus infinity to plus infinity is 

one, since the probability that any sample of the variable has a value between minus and plus 

infinity is one: it must always be somewhere in that range. 

The two most important intrinsic noise sources are often described as being white, Gaussian noise 

sources.  The “Gaussian” part of this means that the probability density function follows a Gaussian 

(sometimes called a “normal”) distribution, with a standard deviation of σ: 
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The standard deviation is a measure of the power in the noise: the mean squared value of a noise 

waveform with a normal distribution given by equation (31.2) is the square of the standard 

deviation. 

 

Figure 31.2  Zero-mean Gaussian amplitude distributions with different standard deviations 

Gaussian noise is very common because of the Central Limit Theorem1.  For example, intrinsic noise 

is caused by very large number of individual noise contributions (electrons) moving randomly 

 
1  If you’ve not come across the Central Limit Theorem, it says: “the probability distribution of the sum of a 
very large number of independent random variables has a Gaussian distribution”.  It doesn’t really matter 
what the probability distribution of the individual random variables is, as long as there are enough of them the 
probability distribution of the sum of them approaches a Gaussian distribution.  In the case of electrons 
moving around randomly in a resistor, the total noise voltage is caused by the sum of the movements of all of 
the electrons, which satisfies this criterion. 
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around, and this tends to result in a Gaussian probability distribution, independent of what the 

probability density function might be for any individual electron. 

The standard deviation of the noise distribution is related to the mean power in the noise by: 
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where Z is the system impedance (if no system impedance is specified then Z is usually assumed to 

be equal to one, and the power becomes a normalised power).  This means that the standard 

deviation of the noise probability density function is equal to the rms amplitude of the noise 

waveform (this is true for any noise distribution with a zero mean).  This is one reason why the rms 

amplitude of a signal is so useful: it is simple to calculate the power in the signal from the rms 

amplitude: you don’t need to know anything else about the shape of the waveform. 

Noise can also be quantified in terms of its power spectral density (PSD), which is a function of 

frequency, and is defined in a similar way to the probability density function: PSD(f)df is the power in 

a small range of frequencies df around f, and the power in a noise signal in range of frequencies 

between f1 and f2 is given by: 
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The total noise power in a range of frequencies from zero to B Hz is therefore given by the integral of 

the noise power spectral density over the range of frequencies of interest: 

 ( )= 
0

Mean Noise Power PSD
B

f df   (31.5) 

(Essentially, this is the noise power that would emerge from an ideal bandpass filter which lets 

through any frequencies between A and B, and no others.) 

As well as having a Gaussian (normal) amplitude distribution, the main intrinsic noise sources can 

usually be assumed to be white, which means that the noise power spectral density at all 

frequencies is the same2.  When the noise is white and hence the power spectral density of the noise 

is constant, equation (31.5) reduces to: 

 Mean Noise Power B PSD=   (31.6) 

Whilst most noise when it is first generated is approximately white, this is not true after the noise 

has passed through a frequency-dependent stage such as a filter or an amplifier with a limited 

 
2 This isn’t exactly true, since it leads to the conclusion that all noise has an infinite power (there are an infinite 
number of frequencies, so if the noise spectral density really was constant, then the integral of the noise 
spectral density across all frequencies would also be infinite, and that implies an infinite noise power, which is 
clearly silly).  In practice the noise is white for all frequencies of interest to most electronic engineers, so it’s a 
safe approximation here to treat the noise as white. 
 



bandwidth.  However, by using the concept of an "equivalent noise bandwidth", we can always 

express the output noise from such a system in the form: 

 Mean Output Noise Power NGain B PSD=    (31.7) 

where Gain is the gain of the system, BN is the equivalent noise bandwidth of the system, and PSD is 

the constant power spectral density of spectrally-white input noise.  (The equivalent noise 

bandwidth is the bandwidth of a brick-wall3 filter, which if placed after a perfect amplifier with the 

same gain would let through the same total noise power.  For a first-order (single-pole) filter the 

equivalent noise bandwidth is π/2 times the 3-dB bandwidth4.) 

Note that all of these equations deal with noise power, not noise voltage.  To get the rms noise 

voltage you have to take the square root of the mean noise power, which means multiplying the 

square-root of the power spectral density by the square root of the bandwidth: 

 rms Noise Voltage B PSD=   (31.8) 

Sometimes the noise is specified in terms of “volts per root Hz”.  This is actually a measure of the 

square root of the power spectral density: multiply the noise in V/√Hz by the square root of the 

bandwidth (which has units of √Hz) and you get a quantity with units of volts: this is the rms noise 

voltage. 

31.3 Intrinsic noise 
Intrinsic noise in electronic circuits (sometimes also called circuit noise) can itself be divided into 

several categories, the most important of which5 are: 

1. Thermal noise: noise generated by thermally induced random motion of charge carriers in all 
conductive elements.  It is present even in the absence of current flow.  Thermal noise is 
dependent on temperature and component value: noise increases at higher temperatures, 
and larger resistances produce higher noise voltages. 

2. Shot noise: noise resulting from the random flow of charge across a potential barrier, e.g. 
across a semiconductor junction.  The power of the shot noise is proportional to the current 
flow.  Larger currents provide more shot noise, but the ratio of shot noise to current 
decreases as the current increases. 

3. Flicker noise: noise which exists mostly at low frequencies; it tends to decrease in power 
inversely proportional to the frequency, hence its other common name: “1/f noise”. 

31.3.1 Thermal noise 

Every resistor in every electronic circuit (or even one just lying on the lab bench not in a circuit) has a 

continuously changing voltage across it due to the thermal movement of the electrons within it.  

They all move (partially) independently, so there is a chance that a large number of them might 

 
3 A brick-wall filter has a gain of one for all frequencies in the passband, and a gain of zero for all other 
frequencies.  They don’t exist, but they are a useful mathematical model of an “ideal” filter. 
 
4 It’s a good exercise to derive this result from the frequency response of a first-order filter. 
 
5 There are a couple of other intrinsic noise sources, including the entertainingly called “popcorn” noise (or 
burst noise) which sounds like popcorn popping if amplified. 
 



decide to move up one end at the same time, and that causes a higher negative charge at one end 

than at the other, and the result is a non-zero electric field, and hence a voltage across the resistor. 

It’s usually modelled as white (since it has a constant spectral density up to frequencies far in excess 

of those we’re interested in here) and Gaussian.  For circuit analysis, it can be modelled as a small 

voltage in series with the resistor, the voltage having a mean-square magnitude of: 

 2 4=v kT BR   (31.9) 

where k is the Boltzmann constant (about 1.38e-23), T is the absolute temperature (usually assumed 

to be 290 K in the lab6), B is the bandwidth in Hz, and R is the value of the resistor.  Note that the 

larger the resistor, the greater the noise voltage across its terminals7. 

This means that any real-life (noisy) resistor can be modelled by the series combination of an ideal 

noiseless resistor of the same value, and a noise voltage source; the voltage source has a zero-mean 

Gaussian (normal) probability distribution, and an rms value (equal to the standard deviation of the 

noise distribution) given by: 

 4 voltste kT BR=  (31.10) 

The symbol et is used since this is thermal noise. 

 

Figure 31.3  Resistor noise model 

Note that this suggests the use of smaller resistors to achieve the lowest noise voltages.  It also 

predicts that the colder the circuit, the less of this form of noise there is.  (This is the reason why 

extremely sensitive radio receivers are cooled with liquid nitrogen.) 

 
6 Why 290 K?  That's about 17 degrees Celsius, which is a bit colder than most labs.  However using this value 
means that kT is almost exactly 4.0 x 10-21, which is easy to remember and use, and it's close enough for most 
purposes. 
 
7 This results in an interesting puzzle: the formula predicts that the noise voltage across an infinite resistor 
would be infinite.  But there is effectively an infinite resistance (nothing) between any point in a circuit and 
ground.  Therefore, there is an infinite noise voltage at all points in all circuits.  What’s wrong with this 
argument?  (Hint: think about potential dividers and the output impedance of the noise source.) 
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31.3.2 Shot noise 

Currents have noise associated with them too.  Electrons don’t march along in orderly ranks, with 

exactly the same number passing across any boundary every second.  Even when the current is 

nominally constant, in some seconds a few more than average pass by a given point in a circuit, in 

some other seconds a few less than average pass by.  This effect results in a noise source associated 

with every current passing across a boundary (for example across a diode).  It can be modelled as a 

small noise current source in parallel with every such current, with a value of: 

 2 2=i I eB   (31.11) 

where I is the mean current, e the charge on the current carrier (usually an electron), and B the 

bandwidth in hertz again.  Although this noise does increase with increasing current, it’s interesting 

to note that the square of the ratio of the noise current to the signal current (which is often what 

we’re more interested in since it contributes to the signal to noise ratio) is: 
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so the noise relative to the signal actually decreases with larger currents.  Again, smaller resistors 

(which would produce larger currents) help to minimise the noise. 

Unlike thermal noise, shot noise is independent of temperature, so cooling a circuit doesn’t help 

reduce this sort of noise. 

31.3.2.1 Why don't you get shot noise in resistors or wires? 

There's an often-overlooked point here that's quite interesting: why does shot noise only appear in 

devices like diodes, where the electrons are jumping from the conduction band down to the valence 

band?  Why doesn't it happen in all currents, for example those in wires?  After all, electrons are 

moving along those in a rather random, chaotic way too. 

The answer is that there's another effect in wires which effectively cancels out the shot noise.  

Imagine, just due to random chance, that a larger than average number of electrons happen to have 

moved along a small segment of wire in one small instant.  The result is a net negative charge at the 

end of the segment, and this tends to repel other electrons, reducing the number of electrons that 

move along the same segment in the next small instant. 

This smaller number of electrons in the next instant means that over both instants taken together, 

the larger number of electrons moving in the first instant is compensated by the smaller number in 

the second instant, making the total the average number expected for the current flowing. 

This compensation happens so fast that over the timescales of interest in electronics, this effect 

tends to practically remove all the shot noise except in situations where the number of electrons 

moving doesn't significantly change the potential difference that the electrons have to move across, 

and the most common example of that is a p-n junction where the potential difference is set by the 

bandgap (the energy difference between the valence and conduction bands). 



31.3.3 Flicker noise 

In addition to thermal and shot noise, most semiconductor devices exhibit a form of low-frequency 

noise called “flicker noise” (or sometimes “1/f noise” since the noise power tends to decrease as the 

frequency increases). 

This is why a device like the TL071 op-amp specifies noise as: “Vn = 18 nV/√Hz at 1 kHz”.  The noise 

from a device like this is not white: although the spectral density is fairly constant at higher 

frequencies, at lower frequencies there is a lot more noise (see Figure 31.4). 

 

Figure 31.4  Equivalent input noise spectral density for the TL071 op-amp (taken from the TL071 data sheet) 

31.4 Extrinsic noise 
Extrinsic noise can also be divided into several categories, depending on how it couples onto the 

signal: 

1. Power supply noise: noise that has arrived on a signal due to a noisy (non-constant) power 
supply.  Amplifiers will specify a power-supply rejection ratio (the ratio of the noise on the 
power supply to the noise on the output signal, usually in dB) which can be used to rate the 
susceptibility of the amplifiers to this sort of noise. 

2. Hum: noise resulting from mains pickup, usually related to different ground voltages at 
different points in the circuit. 

3. Crosstalk and pickup: noise coupling into the circuit from an adjacent external circuit, either 
by electrostatic or magnetic induction. 

4. Radiated noise: noise from a distant source that has arrived due to parts of the circuit 
behaving as a radio antenna. 

It’s difficult to predict the levels of extrinsic noise, since it depends on the behaviour of circuits 

outside the circuit you’re designing.  What you can do is try and make your circuit insensitive to this 

noise, by screening (placing sensitive inputs inside a metal box to stop radio waves getting there), 

using balanced inputs (a good approach for mains hum), and providing sufficient decoupling and 

filtering on the power supply. 



All these forms of extrinsic noise share one property: they are not white.  They have characteristic 

spectra, with peaks at certain frequencies.  The spectrum of the noise can be is a useful indication of 

where the noise is coming from: for example anything which arrives from a digital signal often has a 

series of peaks at multiples of the digital clock frequency; noise from a USB power supply often 

appears at multiples of 1 kHz, as there is a lot of digital noise that couples across from the data lines 

in the USB cable to the power supply line, and the USB connection standard uses a communications 

protocol based on a 1 kHz frame rate; and noise that originated from the mains power supply usually 

appears at 50 Hz (at least in the UK). 

31.5 Quantisation noise 
The third type of noise is produced by analogue-to-digital converters.  Since all real analogue-to-

digital convertors operate with a finite number of bits, none of them can produce an exact 

representation of the value of an incoming signal at every point in time.  There will always be a slight 

error, and this error, which changes every time the analogue input is sampled, can be treated as a 

noise source: 

 ADC output (digitised) ADC input (analogue) noise= +   (31.13) 

 

Figure 31.5  Illustration of the source of quantisation noise 

The power in this noise can be determined reasonably easily for the case where the possible output 

(quantised) levels are closely spaced together and the analogue signal never goes outside the range 

of the analogue-to-digital converter (which is the usual case).  In this case, the maximum possible 

noise voltage is one-half of the difference between two quantisation levels, and the minimum 

possible is minus one-half of the difference. 

For the case of a typical 16-bit ADC and Audacity, the signal is always represented as a number 

between minus one and one, which means that the distance between two adjacent quantisation 

levels is: 
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So the amplitude of the noise always lies between +15.26 µ and -15.26 µ relative to the maximum 
amplitude, since these are the maximum and minimum possible differences between the input 
voltage and the quantised voltage. 

(It’s important to note that this noise, although often assumed to be white, is not Gaussian.  The 

noise voltage cannot take any value; it is always within the range from +15.26 µ to -15.26 µ.) 

If the analogue signal source supplying the input to the ADC already has less noise than this, there is 

little point in improving the noise performance of the analogue circuitry.  To get less noise in the 

digitally recorded signal, it would be necessary to increase the number of bits in the ADC (which 

means greater storage requirements as well as a more expensive ADC). 

In terms of the power in this noise, we can make the reasonable assumption that the noise is equally 

likely to have any voltage in this range.  Then the mean-square value of the noise voltage (which is 

equal to the average noise power) is: 
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which corresponds to an rms value of 8.8µ of noise.  On top of a signal which can be +/- 1, this might 

seem a very small amount of noise, however it is often still audible (the human ear is an amazingly 

sensitive receiver). 

It’s equivalent to a noise level of: 

 ( )6
1020log 8.8 10 101.1 dBFS− = −   (31.16) 

where dBFS is decibels relative to the full-scale reading.  This is the best that it’s possible to do with a 
16-bit ADC. 

More generally, consider an ADC with N-bits in its output, and an input range from -A to +A volts.  
The difference between two output levels is now: 
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and the mean noise squared is: 
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31.5.1 Measuring noise in bits 

Since it is possible to determine a noise voltage associated with an ADC with a certain number of 

bits, it is equally possible to measure a noise voltage in terms of a number of bits.  This is sometimes 

done, and a signal in a system might be specified as having, for example, four bits of noise.  This just 



means that the rms noise voltage is four times the difference in voltage between two adjunct output 

levels of the ADC. 

For a 16-bit ADC with an input range from -1 V to +1V, four bits of noise would correspond to a noise 

voltage of: 
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31.6 Testing the noise colour of noise 
If you plot the spectrum of noise in a poorly-designed USB audio interface (to find out which 

frequencies have most noise present), you might get results like those shown in Figure 31.6 (taken 

using Audacity): 

 

Figure 31.6  Spectrum of Sample Noise Measured Using a VAM v3.1 

The units here are dBFS (dB reference to the Full-Scale voltage, although they are labelled as just in 

"dB") and the points on the graph represent the total amount of power in one “frequency bin”. 

A “frequency bin” is a range of frequencies of width = sample_rate / 2.0 / Size, centred on the given 

frequency.  For example, the spectrum here has a peak value of -32.4 dB at 7989 Hz, the sample rate 

is 44.1 kHz (the standard sampling rate used for compact disks) and the Size parameter is set to 512.  

This means that if a filter8 was used which allowed through a range of frequencies of width: 

 
8 I'm skipping over an important detail here: the shape of the filter is important, as well as its bandwidth.  You 
can try out the effects of other filters yourself in Audacity. 
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centred around 7989 Hz9, the rms amplitude of the signal output from the filter would have an rms 

amplitude 32.4 dB below the full-scale (which as before is 20 x log10(1.0) = 0), so this means that if 

just this range of frequencies were considered, the total rms amplitude would be: 

 

32.4

2010 0.024rms
− 

 
 = =   (31.21) 

relative to the full-scale. 

Looking at the spectrum in Figure 31.6 it is obvious that the noise is not white: there are clearly 

some peaks visible at multiples of 1 kHz.  However in other cases, where it might not be so obvious 

whether the noise is white (i.e. has equal power at all frequencies) or consists of a large number of 

individual frequency components, one way to investigate is to change the “Size” parameter of the 

frequency analysis, which changes the size of the frequency bins plotted on the spectrum plot. 

For example, increasing the Size parameter by a factor of eight (from 512 to 4096) reduces the size 

of the frequency bins by a factor of eight.  If the noise were white, this would be expected to reduce 

the total power getting through the filter by a factor of eight as well (and hence the total rms 

amplitude by a factor of √8 since power is the square of the rms figure). 

However if the power around these frequencies is primarily due to a single discrete frequency 

component, reducing the size of the frequency bin won't make much difference: most of the power 

will still arrive in the same frequency range. 

 

Figure 31.7  Non-White Noise Spectrum with Frequency Bins 

 
9 It’s worth noting that the actual frequency of this noise is probably not exactly 7989 Hz; 7989 Hz is just the 
middle of the range of frequencies where the noise energy occurs.  If the noise is actually coming from a 
single-frequency source it could be anywhere from 7974.6 Hz to 8101.5 Hz.  Given this range, it’s a good bet 
that the noise is coming from a nominally 8 kHz source. 
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Figure 31.8 below shows the result of analysing the same signal as in Figure 31.6, only using 

frequency bins one-eighth of the width.  As noted above, if the noise was white, then this would be 

expected to reduce the noise amplitude getting through the filter by a factor of √8 = 2.83 = 9 dB.  

However in this case the peak value at just under 8 kHz has reduced by only 0.8 dB. 

This strongly suggests that almost all of the noise around this frequency is due to a single frequency 

component, since reducing the size of the frequency range considered when calculating each point 

does not affect the answer.  This in turn points towards an extrinsic source for this noise, rather than 

intrinsic noise due to thermal, shot or 1/f noise. 

 

 

Figure 31.8  Spectrum of Sample Noise using Size = 4096 

31.7 Adding noise sources 
All of these noise sources have one thing in common: they can almost always be regarded as 

uncorrelated or independent sources of noise.  In other words you can’t predict anything about one 

noise source from knowledge of the current value of any other noise source. 

This has one very important consequence for combining two noise sources: consider the mean 

power in the sum of two independent noise sources ni(t) and nj(t): 
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  (31.22) 

The second term in this expansion is the product of the two noise sources.  However, since they are 

independent, at any time the probability of them having the same sign (and therefore the product 

being positive) is the same as the probability that they have different signs (and therefore the 



product is negative).  Therefore the mean value of this product is zero: the value is positive the same 

amount of time that it is negative. 

This leads to the equation: 

 ( )
2 2 2( ) ( ) ( ) ( )+ = +i j i jn t n t n t n t   (31.23) 

In other words, the mean power in the sum of two independent noise sources is equal to the sum of 

the mean powers in the individual noise sources. 

This is an important point to remember when adding independent noise sources: always add the 

powers, not the amplitudes. 

31.8 Noise in op-amp circuits 
To determine the intrinsic noise introduced by an operational amplifier, a noise model of the 

operational amplifier must be used, as well as a noise model of the resistance at its input.  Since the 

noise we’re most interested in has a uniform spectral density, the noise voltage is often expressed in 

terms of this constant spectral density: as the noise voltage per Hz  (pronounced ‘root Hertz’). 

Figure 31.9 represents a general model of an operational amplifier, showing the effect of the noise 

characteristics usually specified in the datasheets.  (In a real op-amp there are many more than 

three individual sources of noise, as each resistor will have a thermal noise associated with it, and 

each transistor and diode a shot noise associated with it, but to make noise calculations easier, the 

contributions of all of these noise sources are combined into these three equivalent input noise 

sources.) 

This is the usual way of specifying the noise added by any amplifier: the total noise due to all of the 

individual noise sources within the amplifier is transferred to a few equivalent noise sources at the 

input of the amplifier.  In the case of operational amplifiers (which have two inputs) three noise 

sources are required at the input to specify the noise (however the two noise currents have the 

same noise power). 

 

Figure 31.9  General noise model of an operational amplifier 
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Here en  is the rms input noise voltage of the op-amp, and in is the rms input noise current (note 

there are two of these, one associated with each input).  All noise sources have a zero-mean 

Gaussian (normal) distribution, and all are independent (so the noise powers from each noise source 

must be added, not the noise voltages). 

The values of en and in are dependent on the internal design of the op-amp and will be specified in 

the datasheet.  For example, Figure 31.10 shows an excerpt from the datasheet of a TL071 op-amp 

showing the noise parameters: 

 

Figure 31.10  Excerpt from TL071 datasheet showing the noise parameters 

The equivalent input noise voltage en is expressed in two ways: first in V / Hz  at 1 kHz, this implies 

that above this frequency the noise voltage source is white, and to convert from the value in 

V / Hz  to the value in volts you can just multiply by the square root of the noise bandwidth at that 

point in the circuit).  Secondly as a fixed 4 µV from 10 Hz to 10 kHz, which suggests that the voltage 

noise source is not white over that frequency range, so a total noise voltage is given instead.  The 

noise current is only expressed in A / Hz , which implies that it can be treated as white at all 

frequencies. 

(Note that both the input noise voltage and input noise current are specified using a source 

impedance of 20 ohms.  This small value of resistance is chosen so that the noise voltage of the input 

resistor itself is negligible in the measurement10.) 

(It is a common mistake to forget which units a value of noise voltage or current is in and get 

answers that are wrong by a factor of the square root of the bandwidth. 

Another quick reminder: combining the powers, rather than the voltages, is another common 

mistake when doing noise calculations.  The key point to remember when using noise models is that 

when combining unrelated noise voltages you must add the mean square values11, as the noise 

voltages are uncorrelated.  For example:  

 = +2 2
Total One Twoe e e  (31.24) 

Also, ensure that when adding noise voltages they are either both expressed in volts, or both in 

V / Hz .) 

31.8.1 Analysing a simple op-amp circuit for noise 

Determining the expected noise power at the output of an op-amp circuit is somewhat tedious, 

since there are a large number of sources that have to be considered.  However since all the noise 

 
10 You can’t use a source resistance of zero, since that would imply an infinite gain, and the op-amp would 

saturate. 

11 The mean square values are just the squares of the rms (root mean square) values.  



sources are independent, a slight variation on the principle of superposition can be used: determine 

the expected noise output voltage due to each noise source in turn, and then combine the noise 

powers of each contribution to determine the total noise power. 

For example, if an op-amp was configured as an inverting amplifier, as shown in Figure 31.11,  

 

Figure 31.11  Inverting amplifier with non-inverting input grounded 

the noise model of this circuit, showing all five noise sources, would be: 

 

Figure 31.12  Noise model of an inverting op-amp (with non-inverting input grounded) 

(The op-amp has three independent noise sources, and the two external resistors both have thermal 

noise sources associated with them.) 

To determine the total noise, we have to work out the effect of each of these noise sources in turn, 

setting all the other noise sources to zero.  First, for the thermal noise associated with the input 

resistor R1, the circuit looks like this: 
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Figure 31.13  Showing the contribution of the input resistor to the noise of an inverting amplifier 

and the noise spectral density at the output due to this noise source is clearly: 
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since this is just an inverting amplifier configuration.  (Note that this is a positive result, rather than 

the negative result usually produced from an inverting op-amp.  It’s positive for noise since I am 

working with rms values here, not actual DC levels, so the fact that the output is inverted makes no 

difference to the rms amplitude; all rms amplitudes are positive.) 

Next, for the thermal noise associated with the feedback resistor R2, the circuit looks like: 

 

Figure 31.14  Showing the contribution of the feedback resistor to the noise of an inverting amplifier 

Here, note that an ideal non-saturating op-amp (with infinite gain and no offset voltage) keeps its 

two inputs at the same voltage, which in this case means at 0 V (since the non-inverting input is tied 

directly to ground).  There is no current flowing through R1 (since it is grounded on both sides), and 

therefore no current through R2 (as ideal op-amps have no input currents).  With no current through 

R2 there is no voltage drop across it, and therefore the contribution to the output spectral noise 

density from this resistor is just: 

 
2 2 24 V/ HzR tv e kT R= =   (31.26) 

Note that while R2 is often a larger resistor than R1, the gain of the op-amp stage has no effect on the 

noise contribution of R2.  As a result it’s usually the input resistance R1, rather than the feedback 

resistance R2 which is responsible for more of the output noise in this circuit. 
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Then there are the three noise sources associated with the op-amp itself to consider.  Firstly, 

consider the noise current on the non-inverting input: 

 

Figure 31.15  Showing the contribution of the first noise current to the noise of an inverting amplifier 

Here the current source has no effect on the voltage on the inverting input, since it is tied directly to 

ground, so this noise source does not affect the voltages at either op-amp input, and hence makes 

no contribution to the total output noise.  (Note that there is a trade-off here: connecting the non-

inverting input directly to ground does minimise the noise, but doesn’t eliminate the effect of the 

input bias current, so it results in an increased offset voltage on the output of the op-amp.  Which 

effect is more important depends on the application.) 

For the other noise current (the one on the inverting input): 

 

Figure 31.16  Showing the contribution of the second noise current to the noise of an inverting amplifier 

the effect on the output can be determined to be: 

 2 V/ Hz
ni nv i R=   (31.27) 
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(The input resistor R1 has no effect here since both ends of this resistor are at ground, so there is no 

current flowing through it.  All the current in must therefore flow through the feedback resistor R2, 

resulting in an output voltage of inR2). 

Finally, the effect of the op-amp’s noise voltage: 

 

Figure 31.17  Showing the contribution of the op-amp noise voltage on the noise of an inverting amplifier 

and this circuit has the form of a non-inverting op-amp, with the output given by: 
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To work out the total noise voltage spectral density at the output, all these noise sources have to be 

squared to determine the noise power, added, then the square root taken to produce an expression 

for the total noise voltage: 
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  (31.29) 

Putting in some typical numbers for a TL071 inverting amplifier with an input resistor of 10k and a 

feedback resistor of 100k (which produces an amplifier with a gain of -10), gives a predicted output 

noise spectral density of (at 290K): 

 14 15 18 141.6 10 1.6 10 1 10 3.92 10 V/ Hzrmsn − − − −=  +  +  +    (31.30) 

Note that the two dominant contributions to the noise are the 10k input resistor, and the amplifier’s 

noise voltage.  The other contributions are negligible in comparison.  The total noise spectral density 

at the output would be expected to be: 
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so over an audio frequency range of 10 Hz to 18 kHz, this would predict a total noise rms voltage of: 

 
nV

238 17990 Hz 31.9μV
Hz

rmsn =  =   (31.32) 

Note that the second-largest contribution to this noise is the noise associated with the input 

resistance R1.  If both R1 and R2 were decreased by a factor of 10, the noise would be reduced but 

the gain would stay the same.  So why not do this? 

The problem is the output impedance of the previous stage.  R1 sets the input impedance of this 

stage, and if it is too low, then it will lower the input voltage due to the high currents causing too 

much voltage drop over the Thévenin equivalent output impedance of the previous stage.  The noise 

will be reduced, but so will the signal level.  Ultimately, it’s the signal-to-noise ratio that is important, 

not the raw noise level12, and decreasing the input resistor by too much can make the signal-to-noise 

ratio worse. 

31.8.2 The effect of 1/f noise 

At least, this works if the noise spectral density is white.  Real op-amps, however, suffer from higher 

noise voltages at low frequencies, so the analysis has to be done slightly differently. 

For the TL071, the 1/f noise is expressed in the datasheet as an equivalent input noise voltage over 

the frequency range from 10 Hz to 10 kHz, so for the noise contribution from 10 kHz to 18 kHz 

equation (31.31) works fine, and we can predict a total contribution to the noise from these 

frequencies of: 

 _

nV
238 8000 Hz 21.3μV

Hz
rms HFn =  =   (31.33) 

For the frequencies from 10 Hz to 10 kHz however, we need to return to equation (31.29) and now 

include the bandwidth, to give the total noise rms voltage: 
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For the noise contribution from 10 Hz to 10 kHz, we can replace the contribution due to the input 

noise voltage with one in terms of the total input noise voltage over this bandwidth: 
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where en10_10k is the input noise voltage over this 10 Hz to 10 kHz bandwidth.  Putting in the numbers 

here then gives: 

 
12 There is an optimum level for the input impedance in circuits like this; if you have a bit of spare time you 
might like to calculate what it is. 
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=
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and it becomes clear that the dominant source of noise in the output is the 1/f noise over this 

frequency range. 

The total noise in the bandwidth from 10 Hz to 18 kHz is then: 

 = + =2 221.3 45.6 50.3 μVrmsn  (31.37) 

This is significantly larger than the 31.9 uV calculated without including the effects of the 1/f noise; 

in fact the 1/f noise is the single largest factor in the output noise for this amplifier. 

This leaves the question “what about the noise at frequencies below 10 Hz”?  In theory at least the 

phenomenon of 1/f noise would predict an infinite noise spectral density at 0 Hz, and hence an 

infinite amount of noise, which in practice doesn’t happen.  However, there can be large amounts of 

noise at very low frequencies, and circuit techniques to remove this noise are required if high 

accuracy is needed at very low frequencies13. 

31.8.3 Analysing an op-amp differential amplifier stage  for noise 

Of most interest in the labs is the performance of a differential input amplifier circuit.  This follows 

the same method, it’s just a little more tedious since there are now seven noise sources to consider: 

 

Figure 31.18  The noise sources in a differential-input op-amp amplifier 

 
13 For example, the use of “chopper-stabilised” op-amps which act to cancel out the low-frequency noise at 
their outputs at the expense of smaller bandwidths. 

enin+

in-

et2

et1

R2

R1

et4

et3 R3

R4



For cases where the gain of the stage is at least ten, and for op-amps with very low input currents 

(such as the TL071 or MCP6291), four of these sources can be neglected (in+, in-, et2 and et4), and the 

remaining noise calculated to be: 
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  (31.38) 

Note that to save a bit of time here, I’ve separated out the contributions from the equivalent input 

noise up to 10 kHz (where the 1/f figure should be used) and over 10 kHz (where the figure in 

nV/√Hz should be used). 

Putting in the numbers for a circuit with R1 = R3 = 10k, R2 = R4 = 360k, and using the parameters for 

an MCP6291 op-amp: 

 

Figure 31.19  The noise parameters from the MCP6291 datasheet 
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and note that again, in this case, it’s the 1/f noise which is the largest single contribution to the noise 

over the audio frequency range. 

31.8.4 A single equivalent input noise figure for amplifiers 

Op-amps are specified with both input voltage and input current noise sources to allow the designer 

to predict the output noise for a range of amplifier configurations and gains.  However, once the 

amplifier has been designed and the total output noise calculated, this can be converted back into a 

single equivalent input noise source. 

All that is required is to take the total output noise voltage and divide by the gain provided by the 

stage to its input signal.  Once this is done, the amplifier can be modelled as a perfect, noiseless 

amplifier, with an input given by the sum of the actual input signal and the equivalent input noise. 

For example, in the inverting-amplifier case considered above where the op-amp had a total output 

noise of 50.3 µV, a feedback resistor of 100k and an input resistor of 10k, this can be modelled in 

terms of noise as an amplifier with a power gain of 100 (–102) and an equivalent input noise power 

of 25.3 pV2 (so that after this noise power is amplified by a factor of 100 it becomes 2.53nV2 = 50.3 

µV2.) 



 

Figure 31.20  The noise parameters from the MCP6291 datasheet 

This technique allows the output noise to be calculated easily given the noise added by the amplifier, 

and the noise power in the input signal.  Note that it’s the powers and power gains which are used 

here, the noises contribution of the amplifier is being added to any noise already present in the 

input signal, and when adding independent noise sources it’s the powers that have to be added, not 

the amplitudes. 

31.9 Multiple stages of noise 
The final part of this short note deals with the issue of combining noise stages.  In many cases (for 

example, a multiple-stage audio amplifier with the gain spread over the stages to increase the 

bandwidth), the total noise of a system is the sum of the contributions of several amplifier stages. 

The easiest way to calculate how much noise appears at the output of a chain of noise-generating 

sub-systems is to consider the noise added by each stage, then move the equivalent input noise back 

to the beginning of the entire chain, in such a way that their contribution to the eventual output 

noise level is kept the same.  Note that it’s the noise powers and power gains that are used here, 

since we’ll be adding up the noise contributions of the amplifier stages, and to add independent 

noise sources you have to add the noise powers. 

So, for example, a three-stage amplifier which has power gains of G1, G2 and G3 and equivalent input 

noise sources ne1, ne2 and ne3 at the three stages: 

 

Figure 31.21  A three stage amplifier, with equivalent input noise at each stage 

is equivalent (in terms of output noise and total gain) to: 

 

Figure 31.22  A three stage amplifier, with equivalent input noise referred to the input of the first stage 
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Note that to move the equivalent noise sources back to the start of the chain, they must be divided 

by the gains of the components they are moved through, so that the amount of noise generated at 

the output of the whole chain in the same.  In the first case, we have: 

 ( )( )( ) ( )1 1 2 2 3 3 1 1 2 3 2 2 3 3 3= + + + = + + +o i e e e i e e en n n G n G n G n n G G G n G G n G   (31.40) 

where ni is the noise power in the input signal, and in the second (equivalent case): 
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which is clearly the same thing. 

This allows us to define an equivalent input noise power for the entire three-amplifier system: 
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since this, when added to the input noise power and multiplied by the power gain of the system, 

gives the total output noise power. 

(Again, note that we are adding noise powers here, because we assume that the noise contributions 

of the individual components are independent.  ne is a power, measured in Watts.  G is a power gain, 

for example the square of the voltage gain.) 

This is a form of a well-known formula known as the Friis formula14.  It shows that as long as the gain 

of the first stage (G1) is large enough, it’s only the noise contribution of the first stage (ne1) which 

makes a significant contribution to the overall system noise.  This is why so much care is taken to 

minimise the noise of the first stage of multi-stage amplifiers (including, in some extreme cases, 

cooling them with liquid nitrogen). 

31.10 Summary: the most important things to know 

• Noise can be intrinsic, extrinsic or quantisation. 

o Intrinsic noise comes from the random movement of electrons in resistors (Johnson 

or thermal noise), or the currents in a diode (shot noise). 

o Extrinsic noise comes from variations on the power supply, communications cables 

or from external electric or magnetic fields. 

o Quantisation noise arises from the process of analogue-to-digital conversion 

• Usually, intrinsic noise is white and Gaussian, extrinsic noise is neither white nor Gaussian, 

quantisation noise is white but not Gaussian. 

o “White” noise implies having the same power spectral density 

o “Gaussian” noise implies the probability density function of the noise is Gaussian 

o One exception is 1/f noise, which is not white but occurs in op-amp noise models 

• When adding two independent noise sources, the squares of the individual rms noise 

voltages should be added to give the square of total rms noise. 

 
14 Named after the Danish engineer Harold Friis. 



• Op-amps can be modelled as having three equivalent input noise sources: two currents (one 

per input) and one voltage. 

• In a multiple-stage amplifier, most of the output noise is usually contributed by the first 

stage of the amplifier, so it is important to design this stage for minimum noise. 


