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Prerequisite knowledge required: Op-Amps, Linear Op-Amp Circuits, AC Circuit Analysis 

27.1 Introduction to filters 
Filters are very useful circuits with a lot of different applications.  For example, most analogue-to-

digital converters (ADCs) will have an anti-aliasing filter before them which removes all frequencies 

above half the sampling rate of the converter.  (If this is not done, then any signal at these higher 

frequencies will appear, after conversion, to be at a lower frequency than there are.  See Figure 27.1 

where a fast incoming signal (the blue sine wave) is sampled at regular intervals (the orange dots).  

The sampled values are exactly the same as would be produced by a much slower sine wave, which 

means that any digital signal processing occurring on the converted values could not tell the 

difference.  The solution is to remove all of these unwanted high frequencies before the ADC using a 

filter.) 

Since it’s usually desirable not to introduce any distortion in the signal being converted, this suggests 

the use of a filter which has as flat a frequency response as possible over the frequencies of interest 

in the application, but which can remove all frequencies above half the sampling frequency to 

remove any ambiguity in the digitised waveform. 

 

Figure 27.1  Illustration of the aliasing problem in analogue-to-digital conversion 

The faster the sampling frequency, the more expensive and power-hungry the ADC, so what’s 

required is a filter with a very sharp drop from the passband frequencies (those it is designed to let 

through) to the stopband frequencies (those it is designed to get rid of). 

Another very different application of filters is in audio tone control circuits.  Here what is required is 

a variable response, one that can be easily changed from amplifying to attenuating a particular range 

of frequencies.  These require some very clever circuit configurations. 

27.2 Why use active filters? 
First, some definitions: a filter is a circuit designed to have different gains at different frequencies; 

an active filter is one which includes an active circuit element in the filter.  For the purposes of this 

module, the only active components that we’ll consider are op-amps. 



The opposite of an active filter is a passive filter.  Passive filters only contain passive components 

such as resistors, capacitors and inductors (all the filters we have seen so far have been passive 

filters).  It’s possible to build a filter with almost any frequency response just with passive 

components, and passive filters have several advantages over any circuit with active elements: 

• Passive filters don’t require power 

• Passive filters don’t distort large amplitude signals1 

• Passive filters don’t introduce as much noise2 

• Passive filters don’t suffer from any noise on the power supply coupling into the signal3 

So why consider active filters at all?  Well, they turn out to have a couple of key advantages: 

• It’s possible to design active filters with large Q-factors which do not require inductors (and 

inductors are large, expensive, difficult to use in integrated circuits and tend to introduce 

non-linearity) 

• Active filters can be designed that only required variable resistors to control the filter 

characteristics in useful ways (rather than using more expensive variable capacitors or 

inductors) 

In this note, I’ll introduce a few of the most common and useful active filter circuits: the Baxandall 

tone control circuits, and two variations on the idea of a voltage-controlled voltage source (VCVS) 

filter. 

27.3 The Baxandall tone control circuits 
Many audio applications require circuits that can adjust the tone4 of a signal, and it’s useful to be 

able to design circuits which affect the tone in intuitive ways.  The most common form of tone 

controls are the bass and treble controls present in a lot of hi-fi and stage amplification equipment. 

A bass tone control increases (boosts) or decreases (cuts) the amplitudes of the low frequencies, 

leaving the higher frequencies unaffected.  A treble tone control does the same job for the high 

frequencies, leaving the lower frequencies unaffected. 

There are many circuits which can perform these functions, but one family of circuits which has 

stood the test of time was designed by Peter Baxandall in the early 1950s5 [1].  The Baxandall tone 

control circuits are both simple and effective, and they have the key advantage that they can boost 

 
1 Within reason, that is.  The passive components will have maximum power ratings, and inductors can be non-
linear.  However active filters are restricted by the power supply voltages being used; for example op-amps 
can’t output any voltage outside the range of their power supplies, and this introduces definite clipping and 
distortion at high signal amplitudes. 

2 Any active circuit element introduces additional noise into the signal path. 

3 Ideally, active filters would not do this either, but there is always a small breakthrough from noise on the 
power supply to the signal.  This can be a particular problem when the incoming signal is small and due to be 
amplified by a large amount in the circuit, as positive feedback and instability can easily result. 

4 By ‘tone’ I mean the balance between the amplitudes of the low and high frequencies in a signal. 

5 P.J. Baxandall, “Negative Feedback Tone Control.  Independent Variation of Bass and Treble Without 
Switches”, Wireless World, Vol.58, No.10 (Oct. 1952) pp. 402.  (Correction Vol.58, No.11 (Nov. 1952) pp. 444.) 



or cut a range of frequencies using only a single potentiometer.  (Potentiometers are cheaper and 

much more readily available than variable capacitors or variable inductors.) 

There are a range of Baxandall circuits, here I’ll just introduce the treble and bass controls.  (Others 

exist which can control only the mid-range frequencies; there are also versions of the circuit which 

can combine treble and bass tone control circuits using a single op-amp.  In fact the original circuit 

Baxandall proposed was a joint bass and treble tone control.) 

27.3.1 The Baxandall treble tone control 

Figure 27.2 below shows an op-amp circuit configured as a Baxandall treble tone control.  Note that 

the op-amp in this circuit is being operated in inverting mode, so the output will go up when the 

input goes down and vice-versa6. 

 
Figure 27.2  A Baxandall treble tone control circuit 

27.3.1.1 The Baxandall treble tone control at low frequencies 

To understand the operation of this circuit it’s helpful to consider its operation at the extremes of 

frequency.  At very low frequencies it’s safe to assume that the capacitor has a very large 

impedance, much larger than the resistors, and therefore it plays no part in the circuit.  This reduces 

the circuit to: 

 

Figure 27.3  A Baxandall treble tone control circuit at very low frequencies 

 
6 This isn’t usually a problem in audio applications. 
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and this is just an inverting amplifier with a gain of minus one at all frequencies, with an additional 

12k resistor between the input and the output (which doesn’t affect the gain of the circuit at all, it 

just causes a bit more current to flow from the input to the output). 

27.3.1.2 The Baxandall treble tone control with the potentiometer set mid-way 

 

Figure 27.4  Baxandall treble tone control with no cut or boost 

Another special case can be considered in an intuitive way: the case where the potentiometer is set 

mid-way, so that the circuit becomes that shown in Figure 27.4. 

In this case, consider the circuit nodes at both ends of the capacitor.  If the capacitor was not there, 

the upper node would be at voltage half-way between Vin and Vout (since it would be in the middle of 

a potential divider with 1k + 5k = 6k to each side).  The lower terminal would also be at a voltage 

half-way between Vin and Vout (since it would be in the middle of a potential divider with 100k to 

each side).  So if the capacitor was introduced into the circuit, no current would flow through it, 

since the voltage on both ends would be the same.  In other words the capacitor might as well not 

be there, it plays no part in setting the voltages at any node in the circuit. 

Without the capacitor, this circuit behaves just like it would at very low frequencies where the 

capacitor has a very large impedance, and we’ve just seen that that implies the gain of the circuit is 

minus one for all frequencies. 

27.3.1.3 The Baxandall treble tone control at high frequencies 

However at very high frequencies, so high that the capacitor has a much lower impedance than the 

resistors and can be approximated by a wire, the equivalent circuit becomes: 
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Figure 27.5  A Baxandall treble tone control circuit at very high frequencies 

At this point we could make an approximation7, and consider that the 100k resistors R4 and R5 are 

sufficiently larger than the values of the resistors R1, R2 and R3 that their contribution to the 

performance of the circuit can be neglected, and therefore simply this still further to: 

 

Figure 27.6  A Baxandall treble tone control circuit at very high frequencies 

which is perhaps the most intuitive way to see what is going on.  With the potentiometer moved 

fully towards the “Boost” position, this produces an inverting amplifier with a resistor of 1k between 

Vin and the inverting input of the op-amp, and of 1k + 10k = 11k between the inverting input and the 

output of the op-amp.  This produces an amplifier with a voltage gain of: 
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so these high-frequencies will be increased in amplitude by a factor of eleven, independent of their 

exact frequency.  On the other hand, move the potentiometer fully towards the “Cut” position, and 

the resistance between Vin and the op-amp’s inverting input becomes 1k  + 10k = 11k and the 

 
7 This isn’t an entirely accurate approximation, and a better analysis including the effects of R4 and R5 reveals 
that the actual gain at high-frequencies in the full-boost position is -1111/111 which is almost exactly -10, and 
in the full-cut position is -111/1111 which is almost exactly -0.1. 
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feedback resistance between the op-amp’s output and inverting input becomes 1k, so the voltage 

gain is now: 
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So what we have is a circuit which does not affect low frequencies at all, but which can either 

amplify or attenuate high-frequencies.  Exactly what is required for a treble tone control. 

27.3.1.4 What about the poles and zeros? 

To work out what happens for frequencies in-between the very low (for which we can assume the 

capacitor is an open-circuit) and very high (for which we can assume the capacitor is a short circuit), 

we need to do a more careful analysis. 

Assuming the op-amp is ideal, we can solve the circuit shown in Figure 27.2 Error! Reference source 

not found.using standard circuit analysis techniques.  The derivation is a little tedious, but eventually 

gives: 
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where the relative position of the potentiometer is given in terms of α, where α  = 1 means the 

circuit is set for full boost, and α = 0 means it is set for full cut. 

When R4 = R5 and R1 = R3, this reveals a low-frequency gain of minus one, a zero with a break 

frequency at: 
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and a pole with a break frequency at: 
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Plotting the break frequency of this pole and zero for typical resistance values (those shown in 

Figure 27.2 with a capacitor of 10 nF) against α gives: 



 

Figure 27.7  Movement of the pole and zero break frequencies in a Baxandall treble tone control 

You can see that when α = 0.5 (mid-way on the potentiometer), the break frequencies of the pole 

and the zero are equal, so they cancel each other out, and the result is a flat frequency response. 

When α is zero, the pole’s break frequency happens at around 1.9 kHz, so this is where the gain of 

the circuit starts to drop significantly.  It continues to drop until approaching the zero’s break 

frequency at around 19 kHz, where it levels off: this provides a cut of treble frequencies.  At the 

other extreme when α is one, the zero’s break frequency happens first (at around 1.9 kHz), so the 

gain of the circuit first starts to increase at around 20 dB/decade until it approaches the pole’s break 

frequency (now at around 19 kHz) where it levels off: this provides a boost in the treble frequencies. 

A plot of the frequency response for a few different values of α is shown below: 

 

Figure 27.8  A Baxandall treble tone control amplitude response for various potentiometer positions 
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Note that with a factor of 10 between the zero and the pole break frequencies in both extreme 

cases, the boost or cut at the higher frequencies must be 20 dB (the Bode approximation technique 

tells us that a good approximate to the frequency response can be obtained by drawing a line at 20 

dB/decade between the first turning point and the second, and a factor of 10 in frequency makes 

one decade, so a total difference in levels between low and high frequencies of 20 dB). 

For intermediate values of α there is less than a decade’s worth of frequencies between the two 

break frequencies, and therefore less than 20 dB difference between the low and high frequency 

gains. 

27.3.2 A Baxandall bass tone control circuit 

Baxandall also described the design of a bass tone control.  It operates on similar principles to the 

treble tone control circuit discussed in the previous section, but with a slightly different circuit 

arrangement (see Figure 27.9). 

 

Figure 27.9  A Baxandall bass tone control circuit 

It can be analysed in a similar way: at high frequencies the low impedances of the capacitors result in 

no current flowing through the potentiometer at all (it all flows around though the two capacitors), 

and so the position of the potentiometer is irrelevant: both ends of the potentiometer are at the 

same voltage.  The circuit effectively behaves as shown in Figure 27.10, which has a voltage gain of 

minus one. 

 

Figure 27.10  A Baxandall bass tone control at high frequencies 
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At very low frequencies, where the capacitors effectively behave as open-circuits, the circuit 

becomes: 

 

Figure 27.11  A Baxandall bass tone control at very low frequencies 

which with these circuit values has a gain variable between 11 and 1/11 (depending on the position 

of the potentiometer8). 

In-between, a similar analysis to that done for the treble tone control reveals a single dominant pole 

and zero again, with break frequencies that move up and down in frequency in opposite directions, 

and coincide when the potentiometer is placed at its mid-position9.  The derivation is rather long-

winded, so I’ll leave that as an exercise to the careful reader with a lot of spare time10, but if you 

assume that the resistor R4 is much greater than the other resistors (a common case in practice), 

then the gain of the circuit can be approximated by: 
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which reveals a pole and zero with break frequencies at: 
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8 This time this is a good approximation: the gain at very low frequencies really does vary between -11 (20.8 
dB) and -1/11 (-20.8 dB). 

9 I’ve had to say “dominant pole and zero” in this case since a full analysis of the circuit reveals that there are 
two poles and two zeros; however provided R4 is chosen to be larger than the other resistors in the circuit, the 
additional pole and zero tend to cancel each other out, and the frequency response of the whole circuit is very 
well approximated by a single pole and zero. 

10 I’ll be impressed if anyone manages to do this.  Hint: try using the Δ-Y transform on the RC network. 
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As expected, when α = 0.5 the pole and zero coincide and cancel out, and when α increases, the 

pole’s break frequency decreases while the zero’s break frequency increases. 

The overall frequency responses for this circuit for different values of α look something like:  

 

Figure 27.12  A Baxandall bass tone control amplitude response for various potentiometer positions 

27.3.3 Another Baxandall bass tone control circuit 

There’s a cheaper way to make a Baxandall bass tone control, and one that is easier to analyse, since 

it only uses one capacitor.  The circuit is shown in Figure 27.13. 

 

Figure 27.13  A Baxandall bass tone control with only one capacitor 

Analysis of this circuit reveals a gain of: 
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and this also gives a maximum gain of 11 and minimum gain of 1/11, while leaving the high 

frequencies unaffected.  (Proof of this is left as an exercise for the reader, it goes along the same 

lines as the previous derivation: assume the capacitor can be replaced by a wire at very high 

frequency, and by an open circuit at very low frequencies). 

27.4 The combined bass and treble Baxandall tone control 
Most often you don’t want just a bass or just a treble tone control, you want both.  There are several 

designs based on the Baxandall circuits which can provide this.  For example, consider the circuit 

shown below: 

 

Figure 27.14  The combined bass-treble Baxandall circuit used on the VAM 

A simple approximate analysis of this circuit can be done by making the assumption that the bass 

and treble controls are independent.  For bass frequencies, this would mean that the smaller 

capacitor C2 is assumed to be so small that its impedance is much greater than the resistor R3, and 

therefore that the voltage on the inverting input to the op-amp is dominated by the voltage from the 

potentiometer P1, which varies with low frequencies, but not at high frequencies (since at high 

frequencies the voltage at both sides of P1, and therefore at all points within P1, is held constant by 

capacitor C1). 

For treble frequencies, the opposite assumption is made: that the impedance of C2 is much less than 

than of R3, so the inverting input to the op-amp is determined by the voltage from the lower 

potentiometer, all the negative feedback into the op-amp comes through the capacitor C2 which 

now has a much smaller impedance than the resistor R2. 

The full analysis required to determine the break frequencies of the poles and zeros is rather 

complex, since there is an interaction between the bass and treble tone controls.  In general, 

optimising the values of the capacitors is usually easier done by simulation. 

While the Baxandall circuits are very useful in giving controllable responses, they only provide a 

single (usable) pole and zero, and therefore cannot reproduce the resonant behaviour characteristic 

C1

C2

R1 R2

R5R4

R3

P1

P2

Vout



of passive LCR circuits.  There are however other active filter circuits that can do this, read on for 

more details. 

27.5 The voltage-controlled voltage source (VCVS) filter 
The voltage-controlled voltage source (VCVS) filter circuit is a useful filter circuit, since it can 

simulate the resonant behaviour of an LCR circuit without requiring a large expensive inductor, and 

is comparatively simple to analyse.  It also has the additional benefit that the resultant circuit can 

have voltage gain at low frequencies.  The main disadvantages are the usual ones for active filters: 

limited dynamic range, additional noise and the requirement for a power supply, and also for this 

circuit in particular, that it has a fixed, defined relationship between the gain and the Q-factor: you 

cannot set one independently of the other, and this limits the circuit’s usefulness in some 

circumstances. 

The circuit looks like this: 

 

Figure 27.15  The voltage-controlled voltage source active filter circuit 

Analysis is straightforward, if a little tedious.  Applying Kirchhoff’s and Ohm’s laws to the circuit 

above produces the following equations (assuming an ideal op-amp): 

For currents flowing into node X (where X is the phasor representation of the voltage at node X, and 

Y is the phasor representation of the voltage at node Y): 
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For the potential divider between X, Y and ground: 
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For the potential divider generating the feedback signal, noting that for stable operation with an 

ideal op-amp the voltages at the inverting input and non-inverting input must be equal: 
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That’s three equations in three unknowns (X, Y and Vout), so that calls for some tedious algebra.  

First, eliminate Y between (27.11) and (27.10): 
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Then using (27.12) and (27.11) to eliminate X and Y from (27.9): 
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Collecting terms in Vin and Vout: 
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and simplifying: 
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Dividing through by R2 gives: 
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and comparing this with the general form for a second-order response: 
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reveals that this circuit does indeed have the form of a second-order response, with: 
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and a low-frequency gain of: 
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So we could write the Q-factor as: 

 
1 1

3 3 DC

Q
K G

= =
− −

 (27.23) 

where GDC is the gain at low frequencies.  This is the main problem with this circuit: you cannot set 

the gain and the Q-factor independently.  There are some other active filter circuits that do not have 

this limitation. 

27.6 The VAM filter circuit 
An active filter circuit often used in audio applications is a slight variation on the voltage-controlled 

voltage source (VCVS) filter circuit described above, based on an inverting op-amp configuration.  

(This one is sometimes called a multiple feedback filter since there are two components that provide 

feedback from the output to different parts of the circuit.) 

Just like the VCVS filter it can simulate the behaviour of a resonant LCR circuit without requiring a 

large expensive inductor and again it does this by using an op-amp and a second capacitor instead. 

However this circuit has one key advantage over the previous circuit: the Q-factor can be set 

independently of the gain, and this is very useful in a circuit which requires no amplification (for this 

application the magnitude of the voltage gain at low frequencies has to be one).  The circuit is 

however slightly more difficult to design, since the resultant expressions for the resonant frequency 

and Q-factor are a bit more complex. 

The circuit looks like this: 

 

Figure 27.16  The active filter used on the VAM soundcard inputs and outputs 

Like any of these circuits it can be analysed using straightforward circuit analysis techniques. 
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Applying Kirchhoff’s and Ohm’s laws to the circuit above produces the following equations 

(assuming an ideal op-amp, where the voltage difference between the inverting and non-inverting 

inputs is so small that the inverting input can be considered to be at ground): 

For currents flowing into the junction marked with an X (X is the phasor representation of the 

voltage at this node): 
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Also, the current flowing through R3 and C2 must be the same (assuming an ideal op-amp with no 

input current): 
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Substituting equation (27.25) into equation (27.24) to eliminate X gives: 
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which when re-arranged gives: 
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 (27.27) 

Comparing this with the general form for a second-order response: 
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reveals that this circuit has the form of a second-order response, this time with: 
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For typical values (R1 = R2 = 12k, R3 = 3k9, C1 =1n8, C2 = 330p), this results in a low-frequency gain of 

minus one, and a resonant frequency and Q-factor of: 
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A filter with a Q-factor of 0.8 has a (very) small resonant peak in the frequency response, and with 

cut-off frequency of 30.2 kHz the maximum gain of this filter is around +0.25 dB at 14.6 kHz.  This is 

about as close to the ideal situation (no resonant peak while maximising the flatness of the gain of 

the filter up to the cut-off frequency) as can be achieved using standard E12 series components and 

is ideal for use as an anti-aliasing or reconstruction filter for audio signals. 

27.7 Summary: the most important things to know 

• Active filters have several advantages over passive filters: 

o They can produce complex poles without using inductors 

o They can include amplification in the filter 

• … and a few disadvantages: 

o They require a power supply 

o They limit the maximum signal amplitude 

o They introduce noise 

• VCVS (voltage-controlled voltage source) filters can be readily designed with any desired 

value of gain, resonant frequency and Q-factor 

• Baxandall tone controls can adjust the bass or treble frequencies in a signal using only one 

capacitor as a reactive element, and a potentiometer to control the response. 

 


