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Prerequisite knowledge required: First-order responses, second-order frequency responses 

26.1 Introduction 
As we’ve seen in the “Second Order Frequency Response” chapter, there are a large number of  

different possible second-order responses, too many to consider them all.  So again, I’ll just 

concentrate on a few of the more interesting cases for the sake of saving time and space. 

I’ll also refrain from doing a step-by-step general solution of the second-order differential equations 

which result from the analysis of the circuits, instead taking the approach of making an intelligent 

guess about the form of the solution, and then testing to see if it works.  This saves a lot of time. 

Since it’s a second-order response, there will now be two constants of integration introduced when 

the differential equation is solved, so we’ll need two different, known values of the step response to 

establish these constants.  Unfortunately the initial value theorem and the final value theorem are 

often not enough, and we have to look at the circuits more carefully to complete the solutions. 

Right… on with the analysis. 

26.2 A second-order low-pass filter with no zeros 
This is the first example studied in the chapter on second-order frequency responses.  It’s the output 

from the circuit shown below: 

 

Figure 26.1  A series RLC circuit with the output taken across the capacitor 

A nodal analysis of this circuit reveals that: 
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where VX is the voltage at the node marked 'X' in the circuit diagram (between the resistor and the 

capacitor), and IR, IL and IC are the currents through the resistor, inductor and capacitor respectively 

(all taken as positive when the current is going clockwise). 
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Some straight-forward algebra to eliminate VX and the three currents from these equations gives the 

second-order differential equation: 
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For a step input, after time t = 0 (which is the only time we're interested in), Vin is a constant value of 

one, so we can write: 
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Now the intelligent guess: assume that there is a solution of the form: 

 ( ) ( ) ( )exp expoutV t A t B t C = + +  (26.4) 

This would then give: 

 

( )
( ) ( )

( )
( ) ( )

2
2 2

2

exp exp

exp exp

out

out

dV t
A t B t

dt

d V t
A t B t

dt

   

   

= +

= +

 (26.5) 

and substituting this into equation (26.3) gives: 
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For this to work for all times, the coefficients of the two exponential decays must be equal on both 

sides, and for terms in exp(αt) this suggests we need: 

 2 0LC A RC A A + + =  (26.7) 

Dividing through by A then gives the formula: 

 2 1 0LC RC + + =  (26.8) 

Doing the same for the coefficients of exp(βt) gives exactly the same formula, except with β instead 

of α. 

We also need the two sides to be equal at infinite time, when the terms in exp(αt) and exp(βt) are 

zero, and this gives: 

 1C =  (26.9) 

At this point we know the value of C, and we have a quadratic equation to determine the values of α 

and β.  That’s convenient, since quadratic equations have two solutions, and we can use one for α 

and the other for β.  Solving this quadratic gives: 
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I’ve left the expression in this form for now (rather than dividing through by C) because it’s useful to 

note that for this second-order response LC = 1/ω0
2, L/R2C =Q2, and RC = 1/Qω0, so we can write 

equation (26.10) here in terms of the resonant frequency and Q-factor as: 
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At this point it’s useful to note that the poles in this system are (see the chapter on second-order 

frequency responses for the derivation): 
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and by comparing equations (26.11) and (26.12) it’s immediately apparent that the values of α and β 

are just the two poles of the frequency response.  So I’ll write them as p0 and p1 from now on. 

The next problem is how to work out the values of A and B. 

The initial value theorem provides one equation: at time t = 0 we know that the output is zero since 

the capacitor cannot suddenly change voltage, so we can write: 
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but we need another equation.  The final value theorem can’t help, this would just give that: 

 ( ) ( )0 1exp exp 0 0 1A p B p C C +  + = + + =  (26.14) 

and we already know that.  To get the final equation we need, we have to go back to the original 

circuit equations, and in particular look at the rate of change of the output voltage with time.  First, 

note that for the inductor: 
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You can’t suddenly change the current through an inductor, since that would require an infinite 

value of dI/dt, and that implies an infinite voltage at X or Y, which is impossible.  So the current just 

after t = 0 must be the same as the current just before t = 0, which is to say it must be zero. 

Now, for the capacitor, we have: 
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and from this we can deduce that if the current just after t = 0 is zero, then the rate of change of Vout 

with time (dVout/dt) must also be zero just after t = 0. 

Hence from equation (26.5) we have that just after t = 0: 
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which gives the other equation we need: 

 + =0 1 0p A p B  (26.18) 

This, together with equation (26.13) provide two simultaneous equations in A and B that can then be 

solved to give: 
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which gives the final solution as: 
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where: 
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There are three cases of interest here: the case where Q < 0.5 (and hence both poles are real), the 

case where Q > 0.5 (where both poles are complex) and the annoyingly awkward case of Q = 0.5, 

which has two equal poles.  This last one requires more study: see the next section for why. 

26.2.1 The awkward case of  Q = 0.5 

This is interesting, since if Q = 0.5 then both poles coincide and p0 = p1.  This means solving equation 

(26.20) involves dividing by zero.  That’s not going to work: something is wrong. 

To solve this one, we have to go back to the original assumption:   

 ( ) ( ) ( )exp expoutV t A t B t C = + +  (26.22) 

and have another go at an intelligent guess for a solution.  In this situation, the one that works is to 

assume that there is a solution of the form: 

 ( ) ( ) ( )exp expoutV t A t Bt t C = + +  (26.23) 

and follow through to find suitable values for A, B, C and α.  The derivation follows the same steps as 

outlined above.  (I’ll leave this as an exercise for the interested reader with time on their hands.)  

The eventual result is: 



 ( ) ( ) ( )0 01 1 expoutV t p t p t= − −  (26.24) 

and this looks like this: 

 

Figure 26.2  Second-order low-pass filter step response with Q = 0.5 

Note in particular that the gradient doesn't suddenly change at time t = 0 (as it does in the case of 

the first-order response).  This is characteristic of second-order low-pass step responses and is often 

the easiest way to tell the difference between a first-order and second-order low-pass step 

response. 

26.2.2 The case of Q < 0.5 

When Q is significantly less than one-half, the two break frequencies of the two poles are both real 

and at very different frequencies.  In these cases we often don’t have to bother with all the maths 

above, we can often produce a good approximation to the solution using a technique called the 

dominant pole approximation. 

26.2.2.1 The dominant pole approximation 

The idea here is that when there are two poles widely spaced in frequency, the lower break 

frequency will dominate the frequency response.  There are few different ways of thinking about 

why this might be true. 

The first is to look at the general solution for this case (derived as equation (26.20) above): 
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If p0 is very much smaller than p1, then the third term isn’t going to have a significant effect at any 

point (since p0 is so small it will never have a large value) and therefore we can neglect it.  Further, in 

the second term we can approximate: 
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which leaves: 
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 ( ) ( )01 expoutV t p t= −  (26.27) 

This, not surprisingly (since we’ve effectively just ignored one of the poles) has the same form as a 

first-order response with a single pole at p0. 

If the two pole break frequencies are more than a factor of around five apart (which corresponds to 

a Q factor of less than √5/6 = 0.37271) then this gives a reasonable approximation of the overall 

response: 

 

Figure 26.3  Second-order low-pass step response for Q = 0.2 with dominant pole approximation 

For values of Q greater than 0.37 but still less than 0.5, the response deviates more noticeably from 

the first-order response: perhaps the most obvious difference is the fact that the second order 

response starts with the slope dVout/dt being zero starts to become more obvious. 

26.2.3 The case of  Q > 0.5 

The derivation of the step response in this case (where the poles are a complex) is a bit involved but 

it does lead to some important results.  We start by noting that the two poles in the frequency 

response are a complex conjugate pair at: 
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which expressed in polar terms2, becomes: 

 ( )( )1 2
0,1 0 exp tan 4 1p j Q −=−  −  (26.29) 

 
1 Deriving this result is a good exercise.  You could also try extending it and showing that if the poles are both 

real and a factor X apart, then the Q-factor is ( )/ 1Q X X= + .  

2 Another good exercise is to derive equation (26.29) from equation (26.28).  Try drawing out the location of 
the poles, and applying trigonometry and Pythagoras’s theorem. 
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which suggests that: 
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This gives the difference between the poles p0 – p1 as: 
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and substituting these results into equation (26.20) gives the general solution: 
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which simplifies to: 
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At this point it’s useful to remember that: 
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which allows equation (26.33) to be rewritten in the much simpler form: 
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and this has the form of a decaying oscillating response.  For a couple of representative values of Q, 

the step response looks like this: 



 

Figure 26.4  Second-order low-pass step response for Q = 2 and 5 

(Note it’s rather easier to derive this result by first assuming that the answer can be expressed in the 

form: 

 ( ) ( )sinoutv t A t B = + +   (26.36) 

and substituting in to find A, B, ω and θ, but I’ll leave that as an exercise as well; here I wanted to 

show how the same general solution can be used for complex poles as for real poles.) 

From equation (26.35) we can derive that the frequency of the ringing is given by: 
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which for large values of Q is approximately equal to the resonant frequency ω0. 

We can also derive that the initial amplitude of the ringing is given by: 
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which for large values of Q is approximately equal to one, and that the decay of the oscillation has a 

time-constant of: 
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For large values of Q we can also approximate: 

 ( ) ( )1 2 1tan 4 1 tan 2
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and hence derive that for large values of Q, the step response can be well approximated by: 
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which is an oscillation at the resonant frequency which decays with the time-constant 2Q/ω0. 

26.2.3.1 Overshoot 

This sort of response (with overshoot) is very common in practice and can cause problems in real 

circuits.  A typical situation would be a logic gate (with a Thévenin equivalent output stage) driving a 

wire (which can be modelled as an inductor) into the input of another logic gate (which has a 

significant capacitance to ground). 

For logic-gates powered from 3.3V (so that a logic zero is 0V and a logic one is 3.3V) this can result in 

an input to the second logic gate which looks like this (note all times here are normalised so that the 

angular frequency of the resonant frequency is 1 radian/second): 

 

Figure 26.5  Input to logic gate driven by circuit with Q = 5 with normalised time axis 

There are two issues here: the first is that if this input is a clock input, then it will clocked twice by 

the transition from a logic high at t = 0: once at around t = 1 and then again around at t = 6.5 due to 

the large ringing in the circuit. 

The second issue is that the overshoot can exceed the maximum input voltage specifications for the 

second logic gate, and this can cause damage.  It’s therefore useful to be able to determine the 

maximum voltage achieved during the step response. 

For large values of Q, this can be determined by looking for turning points in the general solution.  

Differentiating equation (26.25) and setting the result to zero gives: 
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which suggests that turning points occur when: 
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When the poles are complex, this equation has solutions other than at t = 0, since we have here: 
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so the points where the gradient of the step-response is zero are given by: 
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The first solution to this equation (at t = 0) isn’t interesting, since that is the start of the step 

response.  The maximum value will occur at the second solution, which occurs where the argument 

has reached j2π (since exp(j2π) = 1).  Here: 
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Substituting back into equation (26.35) gives: 
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The maximum possible overshoot is 100% (an amplitude of 2), and this occurs when the Q-factor is 

infinite. 

26.2.4 Summary of different step responses for the second-order low-pass filter 

In summary there are three cases of particular interest: 

• Q  <<  0.5 (two real poles with significantly different values): step response is similar to that 

of a first-order system with a pole frequency at the lower of the two poles in the second-

order system 



• Q = 0.5 (two co-incident poles): step response has a noticeable slower rise-time than the 

first-order case, especially as the gradient of Vout is clearly zero just after t = 0 

• Q >> 0.5 (two complex poles): step response exhibits overshoot and ringing at a frequency 

close to the resonant frequency, the ringing decaying with a time-constant of 2Q / ω0. 

26.3 The second-order bandpass filter 
The approach for the second-order bandpass filter is similar, and equally time-consuming if you start 

from scratch.  However, if you have already derived the result for the low-pass filter (see above), 

then there’s a short-cut. 

A second-order with a bandpass response is shown below in Figure 26.6. 

 

Figure 26.6  A second-order series RLC bandpass circuit 

The only difference between this circuit and the low-pass filter analysed before is that the 

components are in a different order.  This, however, doesn’t affect the total impedance in the circuit 

(which is just the sum of the impedances of the capacitor, inductor and resistor), and therefore 

won’t affect the total current flowing in the circuit.  And if we know the current flowing in the circuit, 

all we have to do is multiply that current by the resistance R to get the voltage across the resistor, 

and this is the output voltage. 

Now we know that for a capacitor: 
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and we know the voltage across the capacitor (that was the output in the low-pass filter case first 

analysed), so all we have to do is differentiate it, multiply by C to get the current, then multiply by R 

to get the voltage across the resistor.  Substitute in for RC noting that the sum of the poles is equal 

to –RC in this circuit, and the result is: 
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except when the two poles are at the same frequency, when the output is: 

 ( ) ( )= −2 expoutV t pt pt   (26.50) 

Vin VoutR
LC



 

Figure 26.7  Step-response of the second-order bandpass filter 

26.4 The second-order high-pass filter 
If you take the output across the inductor instead of the resistor or the capacitor, then what results 

is a high-pass filter3. 

The circuit then looks like this: 

 

Figure 26.8  Second-order high-pass filter circuit 

Again, the approach of solving this from scratch is tedious and left as an exercise to the reader, but 

again there is a short-cut: since we know the voltage across the capacitor (the low-pass case first 

analysed above), and we know the voltage across the resistor (the bandpass case analysed above), 

and we know that the sum of the voltages across the resistor capacitor and inductor must be one 

(Kirchhoff’s voltage law), we can write: 

 ( ) ( ) ( )1L C RV t V t V t= − −   (26.51) 

After some more tedious algebra, this leads to the output step response in this high-pass case: 

 
3 This is not as easy to do in practice since real inductors have significant parasitic resistance, which this time 
can't be added into the resistance of the resistor. 
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  (26.52) 

except when the two poles are at the same frequency, when the output is: 

 ( ) ( ) ( )1 expoutV t pt pt= +   (26.53) 

The resultant step responses look like this: 

 

Figure 26.9  Step-response of second-order high-pass filter 

Note that in this case of Q = 0.5 there is some overshoot, even through the poles are not complex. 

26.5 Everything else 
The circuit above either have no zeros (the low-pass filter), one zero at zero Hz (the bandpass filter 

case) or two zeros at zero Hz (the high-pass filter case).  There are a large number of other variants 

where the circuits have zeros at non-zero frequencies, but I won’t attempt a derivation of any of 

these step responses in this chapter. 

Partly this is due to a lack of space, but mostly it’s because there is another technique for deriving 

step responses from the frequency response which doesn’t require solving any differential 

equations.  The maths required is beyond the syllabus of this module, but it’s really not worth 

spending too long deriving the results of these cases here when there’s a much easier method 

coming up later. 

(For those who can’t wait, the maths required is called the Laplace Transform.  See any good 

textbook on Engineering Mathematics for more details.) 

26.6 Summary: the most important things to know 

• Second-order step responses have two time-constants: minus one times the inverses of the 

poles in the frequency responses. 

• Complex poles in the frequency response lead to ringing in the step response. 
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