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Prerequisite knowledge required: Op-amp circuits, Decibels, Bandwidths and Bode Plots 

23.1 Introduction 
Whenever an amplifier is designed, it’s important to know the range of frequencies that are required 

to be amplified (for example, the frequencies from 20 Hz to 20 kHz might be required for an audio 

amplifier).  While "ideal" op-amps have in theory an infinite bandwidth, real op-amps have a gain 

that decreases with increasing frequency, and at one frequency (known as the unity-gain frequency) 

the op-amp doesn’t have any gain at all: the output has the same amplitude as the difference in 

voltage between the two inputs1.  The practical result is that any amplifier built using op-amps has a 

gain which tends to decrease with frequency. 

Knowing how to predict the bandwidth of an op-amp amplifier is essential for anyone designing an 

amplifier.  This chapter is about why the gain of op-amps decreases at higher frequency and how to 

estimate the bandwidth of both inverting and non-inverting op-amp amplifier circuits. 

23.2 What is the bandwidth of an amplifier? 
First, I need to define some terms.  The bandwidth of an amplifier is the range of frequencies over 

which the gain of the amplifier is within a certain proportion of its maximum value. 

Conventionally, the “certain proportion” will be a factor of two in terms of the power gain (in other 

words 3 dB, or a factor of the square-root of two in terms of the voltage gain) unless noted 

otherwise2. 

23.3 What happens to the gain of an op-amp as the frequency increases? 
Good question.  The design of most op-amps follows a single-pole response curve up to just about 

any frequency of interest3.  That means that the open-loop gain4 (in terms of the ratio of the phasor 

representations of the output and input) can be given to a good approximation by: 
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1 Notice I don’t say “the output is equal to the difference in voltage between the two inputs”.  It isn’t: there is a 
phase difference (usually around 90 degrees) between the input and the output at high frequencies. 

2 This is more formally known as the "3-dB bandwidth" of the amplifier.  Unless otherwise stated, that's what 
I'll mean when I write "bandwidth". 

3 This is a technique known as dominant-pole compensation.  It's designed to help stop amplifiers oscillating.  
It's beyond the syllabus for this module, but you'll probably come across it again later in the degree 
programme. 

4 Reminder: the open-loop gain is the gain of the op-amp itself: the op-amp’s output divided by the difference 
between the non-inverting and the inverting op-amp inputs.  This is usually much greater than the closed-loop 
gain (the output of the whole amplifier circuit divided by the input to the whole amplifier circuit). 



where ADC is the gain at DC, and ωd is the break frequency of a pole known as the dominant pole5.    

We could equally-well write this in terms of frequency in Hertz: 
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where fd is the dominant pole’s break frequency in Hz. 

To determine the gain of any op-amp amplifier circuit as a function of frequency, all you have to do 

is use equation (23.2) rather than just a constant gain A in the derivation of the gain of the 

amplifiers.  For example: 

23.4 Calculating the bandwidth of a non-inverting amplifier 
Consider the basic non-inverting amplifier shown in the figure below.  To determine the gain of this 

amplifier as a function of frequency, we can follow the same approach as when we calculated the 

gain of an ideal non-inverting amplifier, but this time use the frequency-dependent form of the 

open-loop gain. 

 

Figure 23.1  A basic non-inverting amplifier 

Following this approach, just like when we derived the gain of this circuit before, we can note that 

the phasor representing the output voltage is the difference between the phasor representations of 

the input voltages multiplied by the open-loop gain, which in this case gives: 
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and that the phasor representing the input voltage V_ is given by the standard potential divider 

equation: 
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5 There are other poles in the frequency response, but they are at such high frequencies that they have a 
negligible effect at most frequencies of interest, as the gain has dropped so much by then due to the effects of 
this much lower-frequency pole.  That’s why this pole is called the dominant pole. 
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Substituting and re-arranging gives: 
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A bit more algebra reveals that the gain is: 
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At this point it’s helpful to note that the open-loop gain at DC is a very large number, and therefore 

in almost all practical cases: 
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so we can approximate: 
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Now when f = 0, this gives for the gain at DC (GDC): 
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which is the formula we’ve derived before for a non-inverting amplifier, and substituting GDC into 

equation (23.8), we can write the final result as: 
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I’ve written the result in this way so that it’s in the general form of a first-order response: 
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where GDC is the low-frequency gain and p is the pole in the frequency response, so it’s more obvious 

that the break frequency for this amplifier is: 
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which suggests that: 

 p DC d DCf G f A=  (23.13) 

or in words: the product of the 3-dB bandwidth of the amplifier and the gain at DC is equal to the 

product of the open-loop gain of the op-amp at DC and the break frequency of the op-amp’s 

dominant pole. 

This is quite interesting, and turns out to be very useful… 

23.5 The gain-bandwidth product 
The dominant pole’s break frequency fd and the open-loop gain ADC are functions of the particular 

op-amp that is being used.  Different op-amps have different values for these parameters (for 

example a typical TL071 has a dominant pole break frequency of 15 Hz and an open-loop gain of 

200,000), but the point is that they are characteristics of the op-amp itself, rather than the circuit 

the op-amp is used in. 

For any given op-amp then, the product fd x ADC is a constant, known as the gain-bandwidth product 

of the op-amp.  Why the gain-bandwidth product?  Because it’s equal to fp x GDC, and that’s the 

product of the gain at DC and the 3-dB bandwidth of any non-inverting amplifier built with this op-

amp. 

This allows the 3-dB bandwidth of non-inverting amplifiers to be accurately estimated from just 

knowing the gain-bandwidth product (GPB) and the DC gain of the amplifier: 

 =
GBP

3-dB bandwidth
DCG

 (23.14) 

At the risk of over-emphasising the point: the product of the 3-dB bandwidth and the DC voltage 

gain of any non-inverting amplifier built using any particular op-amp is always the same (at least to a 

good approximation). 

23.5.1 The unity-gain bandwidth 

Sometimes in op-amp data sheets you don’t find the gain-bandwidth product specified; you find the 

unity-gain bandwidth specified instead.  For all practical purposes they are equal. 

One way to see this is to consider that the unity-gain bandwidth is the frequency at which the open-

loop voltage gain has a magnitude of unity (one), and therefore for the op-amp: 
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Multiplying both sides by their complex conjugate reveals: 
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Once again we use the approximation that the open-loop gain of the op-amp is much greater than 

one, so we can approximate 2 21DC DCA A−   , and therefore: 

 ug d DCf f A=  (23.19) 

which is just the gain-bandwidth product again. 

23.5.2 A quick aside: what about the phase? 

I’ve been careful so far to express the open-loop gain of the op-amp in terms of the magnitude of 

the output voltage and the magnitude of the difference between the voltages on the inputs, rather 

than their actual values.  The reason I’ve done this is that the output voltage of an op-amp is in 

general not in phase with the voltage difference between inputs. 

Consider the open-loop gain of an op-amp, expressed in terms of the dominant pole’s break 

frequency fd and the DC open-loop gain ADC: 
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At very low frequencies (a long way below fd), we can assume that f/fd is much less than 1, and 

therefore we can approximate: 

 ( ) DCA f A  (23.21) 

So the gain is purely real, which implies that the output will be in phase with the input.  However at 

frequencies much higher than the dominant pole’s break frequency, we can assume that f/fd is much 

greater than 1, and therefore: 
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and this indicates that the output will be lagging the input by 90 degrees6.  

 
6 A gain of –j indicates can be written as exp(-jπ/2), which is a phase angle of -90 degrees. 



Now as noted above, for most op-amps the dominant pole’s break frequency fd is at a very low 

frequency (15 Hz in the case of the TL071), so that for many applications (e.g. audio) the op-amp is 

working entirely at frequencies a long way above the dominant pole’s break frequency, and the 

phase difference between the input and the output will be around 90 degrees. 

However, it’s important to note that this is the phase difference between the output of the op-amp 

and the difference in voltages between the non-inverting and inverting inputs to the op-amp.  The 

phase difference between the output and input of an op-amp amplifier circuit (e.g. a non-inverting 

amplifier) will usually be much less than this. 

23.6 Calculating the bandwidth of an inverting amplifier 
What about inverting amplifiers (as shown below)?  Is the 3-dB bandwidth of an inverting amplifier 

given by the same simple formula? 

 

Figure 23.2  A basic inverting amplifier 

Sadly, not quite.  We can derive the answer in the same way as before: just consider that the open 

loop gain of the op-amp is: 
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and include this in the derivation of the gain of this circuit.  If this op-amp is ideal except for the 

limited bandwidth then there is no current flowing into the op-amp’s input terminals, and therefore: 
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and for the op-amp: 
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eliminate Vd between these two equations, and re-arrange, and we get: 
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and expressing this in terms of the gain reveals: 
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Finally, manipulating this into the standard form for a first-order response gives: 
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and making the usual (and usually very safe) assumption that the low-frequency open-loop gain ADC 

is much, much greater than one, we can approximate this as: 
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As before, consider the gain at DC where f = 0: 
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which is as expected, and substituting this back into equation (23.29) gives: 
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Comparing this to the standard form of a first-order response we can deduce that the pole is now at: 
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and therefore the break frequency (which is approximately equal to the 3-dB bandwidth) is: 
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In terms of the op-amp’s gain-bandwidth product, this gives: 
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where GBP is the gain-bandwidth product of the op-amp. 

Note that unlike the non-inverting amplifier, in this case the 3-dB bandwidth times the low-

frequency gain GDC is not equal to the gain-bandwidth product of the op-amp.  However, we can 

write that: 



 ( )1p DC d DCf G f A GBP+ = =  (23.35) 

For inverting amplifiers it’s the 3-dB bandwidth of the amplifier multiplied by one plus the modulus 

of the low-frequency gain which gives the op-amp’s gain-bandwidth product. 

23.7 A couple of examples 
Consider an op-amp with a gain-bandwidth product of 1 MHz.  What would the 3-dB bandwidth be 

of a non-inverting amplifier with a gain of 10?  And of an inverting amplifier with a gain of -4? 

For the non-inverting amplifier with a gain of 10, the bandwidth would be: 
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and for the inverting amplifier with a gain of -4, the bandwidth would be: 
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23.8 The bandwidth of summing amplifiers 
What about summing amplifiers?  Consider the general summing amplifier as shown below: 

 

Figure 23.3  Summing amplifier with three inputs 

Perhaps surprisingly, it turns out that the bandwidth of the amplifier is the same for all of the inputs, 

even if the different inputs have different gains. 

The analysis in this case is similar to the inverting amplifier.  First consider just one input, and 

connect the other two inputs to ground.  This results in the equivalent circuit shown below: 

 

Figure 23.4  Summing amplifier equivalent circuit considering only one input 
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This modifies the derivation of the gain of the inverting amplifier above, as now not all the current 

flowing in from the input through R1 has to go through RF: some of it can go to ground via R2 and R3.  

So we have to write: 
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and following through in exactly the same way as before eventually leads to: 
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from which we can see that the gain at low frequencies (where f << fd) is as expected: 
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but the break frequency is: 
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which is interesting, since this is a function of all of the input resistors R1, R2 and R3 in parallel, and 

this will be the same for all of the inputs.  Since the gain from each input is –RF/R1, -RF/R2 and –RF/R3 

respectively, we can write this as: 
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In words: the 3-dB bandwidth of the gain from every input into a summing amplifier is given by the 

gain-bandwidth product of the op-amp divided by one plus the sum of the modulus of all the gains 

from all the inputs. 

23.9 The bandwidth of differential amplifiers 
Finally: differential amplifiers, which turn out to be interesting as well.  The job of a differential 

amplifier is to provide an output which is related to the difference between two inputs.  You can 

consider this to be a combination of an inverting amplifier with an input Vin1, and a non-inverting 

amplifier with an input from Vin2. 



 

Figure 23.5  Differential amplifier 

To work as a differential amplifier, the gain from the inverting amplifier must be minus one times the 

gain from the non-inverting amplifier, so that: 

 ( )2 1 2 1out DC in DC in DC in inV G V G V G V V= − = −   (23.43) 

The same op-amp is used, so the gain-bandwidth product must be the same for the non-inverting 

and the inverting amplifiers.  However, we’ve just worked out that for a non-inverting amplifier, the 

gain as a function of frequency is: 
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whereas for an inverting amplifier, it’s: 
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But for the differential amplifier to work, the modulus of the gains at low-frequencies (GDC) must be 

the same for both amplifiers.  Does this mean that the bandwidth of the inverting input and the 

bandwidth of the non-inverting input must be different, and therefore at higher frequencies this 

amplifier stops being a differential amplifier? 

Well, no.  It doesn’t.  Why?  Because the gain of the inverting op-amp amplifier formed by putting 

Vin2 to ground really is: 
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since the gain of this inverting amplifier is –R2 / R1.  However the gain of the non-inverting amplifier 

formed by putting Vin1 to ground is actually: 
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so the gain of the non-inverting amplifier is: 
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which has a pole with exactly the same break frequency as for the inverting amplifier.  It’s true that 

it has a larger gain, but in the circuit the input to the differential amplifier comes from the output of 

the potential divider formed by R3 and R4, so all that’s required to make sure the gains match at all 

frequencies is to make: 
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which is most conveniently done by putting R4 = R2 and R3 = R1. 

23.10 All single-pole frequency responses, so they have the same shape? 
Yes, they do.  You might have noticed that in every case above, the gain of the circuit can be 

expressed in the general form for a first-order response: 
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where fp is the 3-dB frequency of the amplifier (otherwise known as the break or break frequency in 

the frequency response).  Knowing the shape is useful, since it allows us to determine the gain of the 

amplifier at any frequency quite simply, just by knowing the 3-dB bandwidth. 

This is useful, because quite often it’s not the 3 dB bandwidth we are most interested in.  The 

specification for audio amplifiers, for example, is often given in terms of a ±0.5 dB gain range over a 

certain range of frequencies.  This suggests that we need to know how to relate the gain-bandwidth 

product to the gain and various different definitions of bandwidth, so we can calculate at what 

frequency the gain has reduced by 0.5 dB. 

This isn’t difficult, you just have to go back to the formula: 
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and use a different value (something other than 1/2) for the difference between the two gains G(f) 

and GDC. 



In general, suppose we are interested in the frequency at which the gain drops by a factor of X dB; 

this would mean that the voltage gain (the square-root of the power gain) would have changed by a 

factor of 10 –X/20.  So: 
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and multiplying both sides by their complex conjugates (to determine the amplitudes of the 

expressions only) gives: 
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After a bit of fairly straightforward algebra we get: 
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which is a factor of /1010 1X − greater than the 3dB bandwidth of the same amplifier. 

For example, if we wanted to know the frequency at which an amplifier’s gain drops by 10 dB 

relative to its value at low frequencies, we’d have to work out: 

 /10 10/10 110 1 10 1 10 1 9 3X − = − = − = =  (23.55) 

which indicates that the 10-dB bandwidth is three times greater than the 3-dB bandwidth, and if we 

were interested in the frequency at which the gain drops by 0.5 dB relative to its value at low 

frequencies, we’d have to work out: 

 − = − = − = − =/10 0.5/10 0.0510 1 10 1 10 1 1.122 1 0.349...X  (23.56) 

which indicates that the 0.5-dB bandwidth is a little over one-third of the 3-dB bandwidth. 

To save some time, some other example results are given below: 



Gain relative to low-

frequency value (1/b) 

Bandwidth relative to the half-power 
bandwidth at the same gain 

0.1 dB 0.153 

0.2 dB 0.217 

0.25 dB 0.243 

0.3 dB 0.267 

0.5 dB 0.349 

1.0 dB 0.509 

1.5 dB 0.642 

2.0 dB 0.765 

3.0 dB 0.9987 

5.0 dB 1.471 

10.0 dB 3.000 

20.0 dB 9.950 

 

Another example: if you calculated the 3-dB bandwidth of a circuit to be 80 kHz, then the same 

circuit will be within 10 dB of its low-frequency (dc) gain up to a frequency of 80 * 3 = 240 kHz, and 

within 1 dB of its low-frequency (dc) gain up to 80 * 0.509 = 20.36 kHz, as illustrated below. 

 

Figure 23.6  Showing the shape of the bandwidth vs frequency curve for simple op-amp circuits 

All the basic op-amp amplifier configurations share this single-pole response shape, and therefore 

the same formula applies: the frequency at which the gain is 1 dB below its low-frequency value is 

0.509 of the half-power bandwidth, and frequency at which the gain is 0.1 dB below its low-

frequency value is 0.153 of the half-power bandwidth, and so on. 

 
7 If you’re wondering why this value isn’t exactly one, it’s because 3 dB isn’t exactly a factor of two.  However, 
it’s very close, and the difference is not usually significant so we often ignore it, and use the terms half-power 
bandwidth and 3-dB bandwidth interchangeably. 

f3dB

-10

Lo
ss

 (d
B

)

-3

1
0

 d
B

 B
an

d
w

id
th

3f3dB

0.509f3dB

frequency

1
 d

B
 B

an
d

w
id

th

0 1.5 2 2.5 3.5 4

-12

-8

-6

-4

-2

0

-1

3
 d

B
 B

an
d

w
id

th



23.11 Summary: the most important things to know 
• The bandwidth of op-amp amplifiers can be calculated from their gain-bandwidth product 

and their gain. 

• For non-inverting amplifiers the 3-dB bandwidth is the gain-bandwidth product divided by 

the gain at low frequencies. 

• For inverting amplifiers the 3-dB bandwidth is the gain-bandwidth product divided by one 

plus the modules of the gain at low frequencies. 

• The X-dB bandwidth can be calculated from the 3-dB bandwidth using the formula 

( )= −/10
3 10 1X

XBw dBf f  

 


