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Prerequisite knowledge required: Phasors, Complex Impedance, Ohm and Kirchhoff’s Laws 

20.1 Introduction 
While both of Kirchhoff’s laws can still be used with AC circuits, the third cornerstone of DC circuit 

analysis (Ohm’s law) cannot be applied directly to AC circuits, since capacitors and inductors do not 

obey Ohm’s law: the current through these components at every instant is not proportional to the 

voltage across them. 

However, it turns out that with a few mathematical tricks, a version of Ohm’s law can be used with 

capacitors and inductors in AC circuits to give a good approximation to the behaviour of these 

circuits in many situations1.  Once these tricks are known, analysis of linear AC circuits is just as 

straightforward as the analysis of DC circuits. 

This note attempts to illustrate the use of these tricks, and show how AC circuits can be analysed 

using complex2 versions of Kirchhoff and Ohm’s Laws. 

20.2 Oscillations and phase 
A reminder from earlier chapters: any sinusoidal oscillation (and for the moment we’re only dealing 

with sinusoidal oscillations) can be represented by the equation: 

 ( ) ( )cosx t A t = +   (20.1) 

and such an oscillation can also be represented in phasor terms as a vector with length A at an angle 

of θ to the horizontal, or as a complex number with an amplitude of A and an argument of θ.  In a 

linear circuit, having a single-frequency sinusoidal input implies that all the voltages and currents in 

the circuit are also single-frequency sinusoids with the same frequency (albeit with different 

amplitudes and phases). 

The subject of AC circuit analysis is concerned with working out the amplitudes and the phases of all 

the voltages and currents in the circuit.  This is slightly more complicated than the equivalent 

problem in DC circuit analysis, since it’s now not just the amplitudes (the maximum value of the 

currents and voltages) that needs to be determined, it’s the relative phases as well. 

For example, the three phasors in the following diagram represent the three voltages in a potential 

divider circuit.  The green signal is the input, and the blue and red signals (the smaller two) are the 

voltages across the two components in the potential divider. 

 
1 You’ll note a few “weasel words” there: “good approximation” and “in many situations”.  The techniques I’m 
about to describe don’t always work, and it’s important to know about these exceptions; more about this 
later. 

2 That’s “complex” in the sense of complex numbers, not “complex” in the sense of complicated.  It’s not that 
complicated really.  I wish they’d chosen a different name for complex numbers, one that doesn’t put people 
off so much. 



You might notice that although at every instant, the red signal plus the blue signal is equal to the 

green signal, it is not true to say that the amplitude of the red signal plus the amplitude of the blue 

signal is equal to the amplitude of the green signal.  That’s hopefully obvious from the diagram 

below.  

 

Figure 20.1  Phasor diagram of the voltages in a potential divider 

Once you’ve accepted and understood that fact (the sum of two AC voltages does not produce a 

signal with the sum of the amplitudes of the voltages) you’ve understood the most fundamental 

issue in analysing AC circuits.  It’s worth thinking about this one until it becomes clear before moving 

on; it’s probably the most common mistake made when starting to learn AC circuit analysis. 

20.3 Resistors and AC circuits 
Resistors are easy.  Resistors obey Ohm’s law, which states that: 

 V I R=    (20.2) 

In other words: the potential difference between the terminals at each end of the resistor is equal to 

the product of the resistance and the current flowing through the resistor.  This applies to every 

instant of time, so the voltage across a resistor is always equal to the resistance times the current 

flowing through the resistor. 

This implies that the maximum value (the amplitude) of the voltage must occur at the same time as 

the maximum value (the amplitude) of the current: in other words the voltage and current have the 

same phase (they are in phase).  This also means that on a phasor diagram, the phasor representing 

the voltage across an ideal resistor will always be in the same direction as the phasor representing 

the current flowing through it. 

So that’s fine. 

20.4 Capacitors and AC circuits 
Capacitors are not so easy.  Capacitors obey the equation: 

 Q C V=    (20.3) 



The charge on one plate of a capacitor is equal to the product of the capacitance and the voltage 

across the capacitor.  Taking just one complex sinusoidal frequency3, and we could write: 

 ( ) ( ) ( ) = = max maxexp expQ t Q j t C V j t   (20.4) 

where Qmax is the maximum charge and Vmax is the maximum voltage. 

Then we could note that the rate of change of the charge is equal to the current: after all if the 

charge is increasing, then current must be flowing onto one plate (and off the other plate) of the 

capacitor.  We can differentiate equation (20.4) to find the rate at which charge is moving onto the 

capacitor (which must be the current flowing) and write: 

 ( )
( )

= = 
max expdV j tdQ

I t C
dt dt

  (20.5) 

and since Vmax doesn’t change with time, we get: 
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which we could write as: 

 ( ) ( )


= 
1

V t I t
j C

  (20.7) 

This has the same form of Ohm’s law (the voltage is proportional to the current); it’s just that the 

resistance has been replaced by an imaginary quantity known as the impedance of the capacitor.  

We can use this formula to analyse circuits in the same way as Ohm’s law for resistors used at DC 

(but remember, only for sinusoidal voltages and currents: it doesn’t work for anything else). 

20.4.1 An example of a capacitor circuit 

Consider a potential divider consisting of a resistor and a capacitor: 

 

Figure 20.2  Simple RC circuit low-pass filter 

 
3 See the chapter on "Phasors" if you’re unsure why I'm taking one complex sinusoid rather than a real sinusoid 
here. 
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The formula for a potential divider (made more general using ‘Z’ for impedance rather than ‘R’ for 

resistance) is: 

 2

1 2

out in
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V V

Z Z
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+
  (20.8) 

where Z2 is the impedance of the component (or network “on the bottom” and Z1 is the impedance 

of the component (or network) “on the top”.  For a resistor, the impedance is just equal to the 

resistance; for a capacitor the impedance is given by 1 / jωC. 

So, in this case, where Z1 is a resistor and Z2 is a capacitor, and Vout and Vin are phasors representing 

the output and input oscillations respectively, we get: 

 







=
+

=
+

1 /

1 /

1

1

j C

R j C

j RC

out in

in

V V

V

  (20.9) 

We can readily convert this to polar form4: 

 ( )( )


−= −
+

1

2 2 2

1
exp tan

1
j RC

R C
out inV V   (20.10) 

The relation between the input and output voltages is now complex: it has a magnitude but also a 

phase.  What does that mean? 

Well, the magnitude of the phasor Vout tells us the maximum value of the output signal at any point 

during the sine-wave cycle; in other words it’s the zero-to-peak amplitude of the output waveform.  

The phase tells us the relative phase between the output and the input voltages.  If this is not zero, 

then the maximum value of the output voltage will not occur at the same time as the maximum 

value of the input voltage.  The two sine waves will be offset, as shown in the scope trace and phasor 

diagram below. 

 
4 The easiest way is to consider the term 1 + jωRC, and note that this can be expressed as the sum of a real part 
of one and an imaginary part of jωRC.  Thinking about this point on the Argand diagram, the amplitude of this 
complex number is the length of the line from the origin to the point (1, ωRC) which Pythagorus’ theorem 
gives as √(1 + (ωRC)2), and the line makes an angle with the real-axis of tan-1(ωRC), hence it can be expressed 
in polar form as √(1 + (ωRC)2)exp(j tan-1(ωRC)).  Then just take the inverse of this expression to give the result 
required. 



 

Figure 20.3  Input and output phasors and signals for the low-pass filter 

20.4.2 Gains and phases in the capacitor circuit 

It’s worth taking a moment to consider what equation (20.10) is saying about the behaviour of this 

circuit at various frequencies. 

At DC (when ω = 0) Vout = Vin so there is no phase difference and no attenuation, which is reasonable 

since at zero frequency the impedance of the capacitor is infinite.  At an infinite frequency Vout = 0, 

which again is reasonable, since at an infinite frequency, the impedance of a capacitor is zero so 

there is never any voltage difference across it. 

In-between these frequencies, the attenuation of the circuit steadily increases with frequency, and 

the phase difference between the output and the input slowly changes from zero degrees to minus 

ninety degrees (in other words the output is lagging the input). 

20.5 Inductors and AC circuits 
Once you’ve understood how to deal with capacitors (and that’s not easy), inductors shouldn’t 

present too much of a problem.  Inductors obey the equation: 

 ( ) = 
dI

V t L
dt

  (20.11) 

The voltage across an inductor is equal to the product of the inductance and the rate of change of 

the current.  Again, taking just one complex sinusoidal frequency, we could write: 
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where Imax is the maximum current through the inductor, and Vmax is the maximum voltage across 

the inductor (and being the maxima, these are not functions of time). 

This has the same form as Ohm’s law, but this time the impedance of the inductor has to be taken to 

be jωL. 

20.5.1 Example of an inductor circuit 

Consider another potential divider, this time consisting of a resistor and an inductor: 

Vin

Vout



 

Figure 20.4  Simple low-pass RL filter 

Again, for a resistor, the impedance is just equal to the resistance; for an inductor the impedance is 

taken to be jωL. 

So in this case, where Z1 is an inductor and Z2 is a resistor, and again Vout and Vin are phasors 

representing the output and input oscillations respectively, using the standard potential divider 

equation gives: 
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Once again, we can convert this to polar form: 

 ( )( )


−= −
+

1

2 2 2

1
exp tan /

1 /
j L R

L R
out inV V   (20.14) 

(You might be interested to note that if the components are chosen so that the value of L/R = RC, 

then these last two circuits will behave in exactly the same way.  They are both types of low-pass 

filter (in other words circuits with a larger output at lower frequencies).) 

20.6 An example of AC nodal analysis 
For a slightly more complex example, consider the circuit below containing a voltage source, two 

resistors and a capacitor: 

 

Figure 20.5  A frequency-dependent potential divider 

Before analysing any AC circuit we have to decide where the phase reference is going to be.  (There 

is no such thing as absolute phase; the phase of any signal is relative to another signal.  We can talk 

Vin Vout

L

R

V1 V2

R1

C R2

i1

i2 i3



about the “phase difference” between two signals, or the phase of one relative to another, but it 

makes no sense to say “the phase of this signal is 45 degrees”.)  Here, I’ll choose the phase reference 

to be the phase of the known voltage source V1. 

The simplest way to analyse this circuit is to consider that it is just another potential divider, but this 

time with the “bottom” impedance set to the parallel combination of the capacitor C and R2. 

All of the techniques of DC analysis work for AC analysis provided the complex impedances of the 

components are considered, and this includes the formulas for passive linear components in series 

and parallel.  So we can generalise the formula for two resistors in parallel: 
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to the case of the impedances of any two linear passive components (resistors, capacitors or 

inductors): 
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In this case, the parallel combination of the resistor R2 and the capacitor C gives an equivalent 

impedance of: 
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Writing the phasor representation of the input voltage source as V1 and the phasor representation 

of the voltage across the resistor as V2, then using the potential divider equation gives an output 

voltage phasor of: 
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which after a small amount of tedious algebra gives: 
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Once V2 is known, all of the currents can be determined by applying Ohm’s law to the circuit: 
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  (20.20) 
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(Alternatively, you could do a nodal analysis, and first apply Kirchhoff’s current law to the junction of 

the three passive components to reveal that: 

 = +1 2 3i i i   (20.23) 

and then applying Ohm’s law, and the variant of Ohm’s law that works for capacitors to R1, R2 and C 

gives:  

 − = 1R1 2 1V V i   (20.24) 

 = 1 / j C2 2V i   (20.25) 

 =  2R2 3V i   (20.26) 

That’s four equations in four unknowns.  From here on it’s just a lot of tedious algebra, substituting 

one equation into another, which would lead to the same answers.) 

Some things are immediately apparent: for example the phases of V2 and all of the currents are non-

zero, suggesting that the source voltage V1(t) and the current supplied by this voltage source are not 

in phase (except at DC where ω is zero). 

If we want the amplitude of these voltages and currents, and their phase relative to the reference 

voltage, then we have to determine the magnitude and phase of these complex expressions.  In 

many cases, this is most easily done by converting both the numerator and denominator of the 

relevant complex expression into polar form, and then dividing.  For example, to work out i2, we 

would note that: 
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and using Pythagorus and the argument of the complex number: 
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and therefore: 
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  (20.29) 

From here, it’s easier to see that the magnitude of the current is given by: 
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and the phase of the current phasor i2 relative to the phase of the voltage phasor V1 is5: 
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It can get much more tedious for more complex expressions; but this is the way to derive 

expressions for the amplitude and phase for any derived voltage and current in an AC circuit.  (No 

wonder people prefer to use simulators most of the time.) 

20.7 A more useful circuit: compensating X10 scope probes 
A lot of the circuits that we analyse using phasors are designed to have some sort of filtering action: 

different frequencies have different gains.  One rather interesting exception to this rule is the X10 

scope probe, which might not at first seem like a circuit that requires careful AC analysis, but in fact 

it relies on a clever use of a small capacitor to maintain the accuracy of the scope’s readings. 

Ideally a scope probe should measure the voltage at a point in a circuit without changing the 

operation of the circuit being measured.  X10 scope probes increase the input impedance of the 

oscilloscopes by a factor of 10 to reduce the loading effect of the probe on the circuit.  However this 

gives them a problem… 

Consider what would happen if you just added a 9 M resistor to a scope probe whose input looked 

like a 1 M resistor in parallel with a 20 pF capacitor (typical values for scope inputs) in order to get a 

 
5 In case you’ve not seen this done before: the result π/2 - tan-1(x) = tan-1(1/x) comes from considering a right 
angled triangle: if one (non right-angle) angle has a tangent of x (so it’s tan-1(x) degrees), then the other (non 
right-angle) angle must be π/2 minus the first one, and have a tangent of 1/x.  So tan(π/2 - tan-1(x)) = 1/x, and 
the result follows.  It’s often a useful result when dealing with complex numbers. 



total input resistance of 10 M (ten times greater than the 1 M of the scope alone).  You'd get 

something like the following circuit: 

 

Figure 20.6  An uncompensated X10 scope probe 

where Vscope(t) is the signal amplified and displayed on the scope's screen, and Vm(t) is the voltage 

being measured. 

This circuit has a definite frequency response: it doesn't treat all frequencies equally.  We've already 

analysed this circuit above; the response is the same as the circuit described in equation (20.19) with 

R1 = 9 M, R2 = 1 M and C = 20 pF.  So the frequency response of this circuit is (in terms of the phasor 

representations of Vscope(t) and Vm(t)): 
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This is not a flat frequency response.  Some frequencies will be attenuated more than other ones, 

which will result in a distortion in the displayed waveform on the oscilloscope. 

However, what about the following circuit? 

 

Figure 20.7  A compensated X10 scope probe 

This one can similarly be analysed using the potential divider equation, and this time both the 

"upper" and "lower" impedances are parallel combinations of a resistor and a capacitor.  In this case 

we'd get: 
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 and after some manipulation of this, we end up with: 
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Now Rp is nine times Rs, so we could write: 
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Now the clever bit: what happens if you choose Cp (the capacitor across the 9 M resistor) to be one-

ninth of the scope's input capacitance Cs?  So that 9Cp = Cs? Then you'd get: 
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and that is frequency independent.  Vscope is now just one-tenth of Vm at all frequencies. 

For this to work, the capacitance in the scope probe Cp has to be set accurately to one-ninth of the 

scope's input capacitance, and that's what compensating a scope probe does: in many real scope 

probes Cp is a variable capacitor, and can be adjusted to match whatever scope input the probe is 

being used with.  (An alternative solution is to fix the value of Cp, and effectively make Cs a variable 

capacitor by adding putting a small variable capacitor between the signal and ground.) 

(Note that in this analysis I’ve neglected the capacitance of the cable connecting the probe to the 

oscilloscope.  In practice, this cable has a significant effect on the circuit, however it can be included 

in the compensation in exactly the same way.) 

20.8 Summary: the most important things to know 

• All the techniques used for the analysis of linear DC circuits (nodal analysis, Thévenin 

equivalent circuits, source transformations, potential and current dividers) can all be used 

for AC circuits as well provided: 

o Complex impedances are used instead of resistances 

o Phasor representations of the voltages and currents are used rather than their 

constant (DC) values 

o Only sinusoidal inputs and outputs are considered 

o Only linear components are used in the circuits 

 


