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Prerequisite knowledge required: Phasors, Ohm's Law and Kirchhoff's Laws 

19.1 Introduction 
In the chapter on phasors, we saw how using complex numbers to represent sinusoidal oscillations 

makes adding and subtracting sinusoidal oscillations much easier to do.  Applying Kirchhoff’s voltage 

and current laws requires a lot of adding and subtracting of voltages, so this gives us a convenient 

method for applying Kirchhoff’s laws to circuits in which there are sinusoidal voltage and current 

sources at the same frequency (but different phases). 

However you can’t solve a circuit just by using Kirchhoff’s laws.  You need some way to relate the 

voltage across the components to the current through them.  Ohm’s law is fine for resistors, but 

what about capacitors and inductors? 

It turns out that the use of complex numbers (as in phasors) provides a way to extend Ohm’s law to 

cover capacitors and inductors.  This is the subject of this chapter: the technique of complex 

impedances.  This is another topic which can cause a lot of confusion, and I suspect that this is 

because there’s a trick to the use of complex impedances to analyse AC circuits which is often 

glossed over, or at least not described very well1.  This chapter is my attempt to explain what’s going 

on.  (If this gets a bit confusing, you can just skip to the summary at the end: knowing how to use 

complex impedances is the most important thing here.) 

19.2 Ohm’s law and capacitors 
Ohm’s law only applies to resistors (by definition: anything that doesn’t obey Ohm’s Law isn’t a 

resistor2).  Ohm’s law states that the current through a resistor is proportional to the voltage across 

it.  The ratio of the voltage to the current is known as the resistance of the resistor, and it’s 

measured in ohms. 

Resistance is a real number, so the ratio of the voltage across the resistor to the current going 

through it is constant.  This means that when the voltage is at a maximum, the current will be too, so 

the voltage across the resistor and the current through it always have the same phase. 

However, consider a capacitor: the current flowing into one side (and out of the other side) of a 

capacitor is not proportional to the voltage across it.  Capacitors obey a completely different law: 

 Q CV=   (19.1) 

where Q is the charge stored on each plate of the capacitor, C is the capacitance and V is the voltage 

across the capacitor.  For a capacitor, it’s not the current that’s proportional to the voltage, it’s the 

charge. 

 
1 At least it wasn’t explained well to me when I was trying to learn this stuff. 

2 It’s a bit of a strange law, since it only applies to things that obey it.  However, since a lot of real physical 
things do obey Ohm’s law (at least approximately) it turns out to be very useful in practice. 



Current occurs when charge moves around, so if the charge on the capacitor’s plates change, then a 

current must have flowed onto one plate (and off from the other plate) of the capacitor.  In fact, 

since current is the rate of flow of charge, we can write: 

 ( )
( )

=
dQ t

I t
dt

  (19.2) 

If the current is held constant, the rate of change of charge will be constant, which means that the 

capacitor will just charge up (or down) at a constant rate.  A constant current implies a steadily 

increasing (or decreasing) voltage. 

Put these two equations together, and we get: 

 ( )
( ) ( )

= =
dQ t dV t

I t C
dt dt

  (19.3) 

Obviously we can’t use Ohm’s Law (and all the corresponding circuit analysis equations such as the 

potential divider equation, or the equations for series and parallel resistors) on capacitors, since the 

current is not proportional to the voltage.  Capacitors are not resistors: they don’t obey Ohm’s law. 

19.2.1 Oscillating signals 

Clearly capacitors don’t obey Ohm’s law in general, but what about the special case we’re interested 

in here?  A single frequency input?  Suppose that the signal in the circuit was a sinusoidal oscillation, 

something that could be represented by: 

 ( ) ( )= cosV t t   (19.4) 

Then we could write: 
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and that gives us: 

 ( )
( )

( )= = − − 21
dV t

I t C C V t
dt

  (19.6) 

Well, it’s a little closer to what we’d like (the current proportional to the voltage).  We’ve got rid of 

the differentiation at least.  But it’s not quite there yet.  We still can’t apply Ohm’s law to this 

capacitor. 

19.2.2 However… 

Suppose that the signal we were putting into the circuit wasn’t a real cosine, but was in fact a 

complex cisoidal oscillation with amplitude A and phase θ, for example: 



 ( ) ( )( )expx t A j t = +   (19.7) 

Then going through the process above reveals that: 
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and that gives us: 
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Ah!  Now we have something that seems to obey Ohm’s law.  The current is proportional to the 

voltage.  For this strange complex oscillating signal, the capacitor appears to be behaving just like a 

resistor with an impedance of 1 / jωC. 

19.2.3 But the signal we’re interested in isn’t a complex cisoid, it’s a real cosine… 

Good point.  However, there’s another way to write a cosine.  If you consider Euler’s famous 

equation: 

 ( ) ( )cos sinje j  = +   (19.10) 

It’s quite straightforward3 to prove that: 

 ( ) ( )
1

cos
2

j je e  −= +   (19.11) 

And hence for an oscillation with amplitude A and relative phase θ: 
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In other words, a cosine can be expressed as the sum of two complex cisoidal oscillations, one with a 

positive frequency and one with a negative frequency, each with an amplitude of one-half of the 

original real signal.  And we’ve just proved that for a complex cisoidal oscillation, capacitors behave 

just like resistors, although with an impedance of 1 / jωC. 

 
3 Noting that cosine is an even function so cos(-θ) = cos(θ) and sine is an odd function so sin(-θ) = -sin(θ), we 

get:   ( ) ( ) ( ) ( ) ( ) ( )
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Therefore, to a cosine wave, capacitors should behave just like resistors with an impedance of 

1/jωC… except we just proved above that they don’t.  Oh dear, what’s going on? 

19.2.4 The trick (you might not like this)… 

The problem is that we’ve just expressed the cosine in terms of two cisoidal oscillations, one with a 

positive frequency (ω) and one with a negative frequency (–ω).  This means that for the positive 

frequency, the capacitor behaves like a resistor with an impedance of 1 / jωC, and for the negative 

frequency, it behaves like a resistor with an impedance of 1 / j(–ω)C = –1 / jωC.  So the capacitor 

doesn’t behave the same way for the two components of the cosine wave. 

One way round this problem would be to use superposition: first do an analysis of the circuit for 

positive frequencies using a capacitor impedance of 1 / jωC, and then do another analysis of the 

circuit for negative frequencies using a capacitor impedance of -1 / jωC, and then add up the two 

results.  Provided the circuit is linear4 that would work, but it’s rather long-winded.  Fortunately 

there’s a short-cut. 

How about if we just consider the positive frequency component?  Just don’t worry about the 

negative frequency component for now?  That would give as an answer (for the voltage, or current, 

or whatever we’re trying to work out) a complex cisoidal oscillation with a certain amplitude and 

phase.  If we call this component of the answer y1(t), we could write something like: 
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The trick is to use the fact that whatever we’re trying to work out (the actual voltage in the circuit, or 

the actual current through a component), the answer must be real.  It can’t have any imaginary 

component (there’s no such thing as an imaginary voltage in real life).  So whatever happens to the 

negative frequency component, the result of adding it back to produce the final answer must cancel 

out the imaginary component of equation (19.13).  Since we also know that the result is going to be 

an oscillation with a frequency of –ω, there’s really only one thing this negative frequency 

component can be: the complex conjugate of the solution for the positive frequency5. 
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(using the fact that cos(-x) = cos(x) and sin(-x) = -sin(x)). 

 
4 And throughout this whole analysis we’ve been assuming that the circuit is component (double the input and 
the output doubles).  If it isn’t then we couldn’t use Ohm’s law anyway, so this isn’t a problem in practice.  

5 There’s another way of thinking about this that you might find more convincing.  If you write out all the 
circuit equations using the negative frequency, you’ll find that you have the complex conjugate of the circuit 
equations for the positive frequency case.  Therefore the result of solving them will be the complex conjugate 
of the positive frequency case.  So there’s no need to solve them: just take the positive frequency case that’s 
already been solved, and add the complex conjugate of that result to get the actual real voltages and currents. 



Adding these two together then results in: 
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which is entirely real (as any actual voltage or current measured in the lab must be). 

In effect we’ve used the fact that we know the final answer must be real to save time working out 

what happens for negative frequencies.  This allows us to just consider the positive frequency 

component, and do one calculation, just like Ohm’s law allows us to do at DC.  Having done the 

calculation, we just throw away the imaginary part of the answer (since we know this will be 

cancelled out by the imaginary part of the answer for the negative frequency component) and 

double the real part (since the real part of the negative frequency component is the same as the real 

part of the positive frequency component, the real part of the resultant sum will be twice the real 

part of the positive frequency component y1(t)). 

19.2.5 Why bother to halve the amplitude at the start and then double it at the end? 

No reason at all, really.  Strictly speaking it should be done since that’s where the maths comes from, 

but in practice it’s a bit of a waste of time.  We could dispense with both operations, and this is 

standard practice.  This final simplification completes our technique, which could be summarised as: 

1. Convert all sinusoidal signals into cisoidal signals with a real part equal to the original 

sinusoidal signal6. 

2. Analyse the circuit using the familiar techniques (Ohm and Kirchhoff’s laws), but with the 

impedance of the capacitors set to 1 / jωC. 

3. After the analysis, take the real part of the answer. 

That’s it.  It works for inductors as well (and any combination of inductors, resistors and capacitors), 

but for inductors the impedance must be set7 to jωL. 

19.2.6 Complex impedance and phasors 

You might notice that the first step in the method described above is almost the same thing as 

finding the phasor representation of the signals.  If the signals are already described in phasor form, 

then the first step just requires multiplying by exp(jωt). 

However, it’s not worth doing this.  Since this factor of exp(jωt) appears in every voltage and every 

current, we can immediately cancel it out from any application of Ohm or Kirchhoff’s laws to the 

circuit just by dividing all terms in the equations by exp(jωt).  So we usually don’t even bother 

writing it down.  This means we are just using the phasor representations of the signals in these 

 
6 Equal to, and not half of, since we’re going to dispense with the factor of two in this method.  Quick 
reminder: strictly speaking the positive frequency component of cos(ωt) is 1/2 exp(jωt). 

7 I’ll leave this one as an exercise to the reader.  For an inductor of L Henrys, the relevant equation is that the 

voltage is equal to L times the rate of change of current: ( )
( )

=
dI t

V t L
dt

 . 



equations.  The factor of exp(jωt) can be added in at the end of the calculations, just before taking 

the real part to reveal the actual observed signal. 

So now the only difference between the calculations in AC circuit analysis and those for DC circuit 

analysis is that in AC we’re using complex numbers (the phasor representations of the voltages and 

currents) rather than real numbers (the actual voltages and currents), and we’re using complex 

impedances for capacitors and inductors. 

For example, consider the circuit below, where a sinusoidal voltage source is driving a capacitor 

through a resistor: 

 

Figure 19.1  An AC potential divider 

The first step is to express the voltage source in phasor form.  Since it’s a sine wave (rather than a 

cosine wave) this means that the required phasor is –jV0 (with an argument of –π/2) since: 
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Then, using the complex impedance of the capacitor, the standard potential divider equation can be 

used to compute the phasor representation of the voltage across the capacitor: 
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The voltage across the capacitor can then be determined by multiplying this by exp(jωt) and taking 

the real part: 
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However this calculation is easier to do if the phasor representation is first converted into polar 

form: 
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and knowing how phasors are related to the real signals, we can immediately identify the amplitude 

and phase of the signal, and write the voltage across the capacitor as: 
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which is equal to: 
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(This is the same problem done in the chapter on time constants and time variant signals using 

differential equations; it takes rather longer to get to this result that way.) 

19.1 Summary: the most important things to know 

• When analysing the response of a linear circuit to sinusoidal inputs, you can use the familiar 

Ohm’s law and Kirchhoff’s laws to analyse the circuit, using a value of 1 / jωC as the 

impedance of the capacitors, jωL as the impedance of the inductors, and a complex cisoidal 

oscillation A exp(jwt + θ) to represent a cosine wave signal with amplitude A and phase θ. 

Then apply all the usual analysis, remembering to use the phasor technique of using complex 

numbers to represent all the voltages and currents.  To extract the real voltage or current at 

any point, just multiply the phasor by exp(jωt) and take the real part of the result. 

• This technique can only be used for linear circuits. 

• If the input is not at a single-frequency, its necessary to express the input in terms of the 

sum of a number of single frequencies, apply this technique to each component frequency, 

and then add up all the results for each component.   

o This is a very common and popular thing to do… but that’s another story for another 

time. 

 


