
6 A Short Introduction to Thévenin and Norton’s Theorems 
v1.3 – June 2021 

Prerequisite knowledge required: Ohm’s Law and Kirchhoff’s Laws, Resistor Networks 

6.1 Introduction 
As noted in a previous chapter, Ohm’s law: 

 V I R=    (6.1) 

and Kirchhoff’s laws: 

 0 0n n
node loop
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will allow you to work out the voltages and currents everywhere in most of the circuits we’ll be 

considering in this module1. 

However, for anything other than circuits containing a handful of components, the maths can get 

very tiresome, as you end up with a lot of simultaneous equations in a lot of unknowns.  There are a 

few short-cuts that can help with the calculations, and one of the most useful of these is the use of 

the concept of an equivalent network: replacing parts of the circuit with a simpler network that 

behaves in exactly the same way. 

These equivalent networks, how to produce them and how to use them, are the subject of this 

chapter. 

6.2 Equivalent networks 
Two networks are equivalent if they behave in exactly the same way to any voltage or current 

applied to their terminals.  We’ve already seen an example of an equivalent network2 when we 

looked at resistor networks: 

 
1 I should include a reminder here that this only works for small, low-frequency circuits where we can assume 
that Kirchhoff’s laws work (see the introduction to Kirchhoff’s laws for more details).  Also, for circuits with 
non-linear elements such as diodes, we’ll need another equation which relates the voltage across a diode to 
the current flowing through it. 

2 You might find some people talk about “equivalent circuits” in this context.  Engineers can be a bit lazy here 
and refer to any group of connected components as a “circuit” whether or not there is a loop around which 
current can flow.  I’ll try to stick to using “circuit” to refer to something around which current can flow, and 
“network” for any group of connected components.  So all circuits are networks, but not all networks are 
circuits (for example these resistors are a network, but not a circuit). 



 

Figure 6.1  Simplest possible example of an equivalent network 

Provided that R3 = R1 + R2, these resistor networks would behave in exactly the same way to anything 

connected between the two terminals X and Y. 

Rather than using Ohm and Kirchhoff’s laws to analyse large circuits, an alternative is to first divide 

the circuit into a few (often just two) networks, and then find simple equivalent networks for these 

networks.  Then recombine the equivalent networks, and solve the much simpler circuit.  This is the 

essence of Thévenin circuit analysis. 

It turns out that for a certain type of very common and useful network (two-terminal linear 

networks), there is a simple way to find very simple equivalent networks.  This is the subject of 

Thévenin and Norton’s theorems. 

6.3 Thévenin’s theorem 
Thévenin’s theorem states that for any two-terminal network containing only linear components3 

and fixed voltage and current sources, there always exists an equivalent network that contains just 

one fixed voltage source, and one resistor, wired in series. 

Figure 6.2 - Real and Thévenin equivalent networks.  (With the right choice of VTH and RTH, both of these networks would 
behave in the same way when the terminals A and B are connected to any other network to form a circuit.) 

6.3.1 Proving Thévenin’s theorem 

Knowing how to prove Thévenin’s theorem is outside the syllabus of the module, but it’s instructive 

to know how it can be done.  First we need to carefully define what we’re trying to prove: for any 

two-terminal linear network, it is always possible to find a value VTH and RTH such that the same 

 
3 Linear components include resistors, capacitors, inductors, transformers, and linearly-dependent voltage 
sources and current sources (for example a voltage source which produces a voltage ten times greater than 
the voltage between two nodes somewhere else in the network).  It does not include diodes, however this 
theorem can still be used in non-linear networks if only small changes in voltages and currents are considered: 
see the note about linearity and superposition for more details of the small-signal approximation. 
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current would flow in the external network X, no matter what X is (network X doesn’t have to be 

linear).  See the figure below: 

 

Figure 6.3  Thévenin's theorem: what we're trying to prove 

For any particular external network X, there will be a current flowing out of the linear network, into 

X (shown as ‘I’ in the figure above), and a voltage across this network (shown as VAB).  The static 

resistance of the network X at this operating point is therefore VAB / I. 

Therefore, we can replace the external network with a current source of value I, and the voltage 

across the terminals AB should be the same: it will be whatever voltage is required to produce this 

current through the external network. 

 

Figure 6.4  Proving Thévenin: replacing the external network 

We now have a completely linear circuit, so we can apply superposition and consider that the 

voltage VAB will be the sum of the voltages due to the external current source I and the voltage due 

to all of the internal voltage and current sources inside the linear network.  To evaluate the first of 

these, set all of the voltage and current sources inside the linear network to zero.  Since it is a linear 

network, the voltage VAB must be linearly proportional to the current I, so no matter what the value 

of current is, we can write: 

 _1ABV kI= −   (6.3) 

where k is a constant (I’ve included the negative sign in this equation since a positive current will 

cause the voltage at B to be higher than the voltage at A, and therefore the voltage VAB to be 

negative; so including this factor of minus one means that k will be positive).  Then the second 

contribution can be determined by setting the external current source to zero, and turning on all of 

the voltage and current sources in the linear network.  This would then result in voltage across the 

terminals VAB_2.  The total voltage across the output is therefore: 
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 _1 _2 _2AB AB AB ABV V V V k I= + = −   (6.4) 

and this will be true for any external source which passes a current I when a voltage VAB is placed 

across it. 

Now consider this network: 

 

Figure 6.5  Proving Thevenin: the equivalent network 

The voltage across the terminals AB in this network is given by: 

 _2AB ABV V k I= −   (6.5) 

But this is identical to equation (6.4).  In other words, the equivalent network shown in Figure 6.5 

produces the same voltage as the unknown linear network for any value of external current I. 

Therefore the two networks are equivalent. 

6.3.2 Determining the Thévenin equivalent network 

Knowing that an equivalent network exists just leaves the problem of trying to work out what it is for 

any given network.  How to do this depends on whether you are supplied with the circuit diagram of 

the linear network for analysis, or just presented with a box with two-terminals in the lab. 

First, what do you do if presented with a circuit diagram?4  The simplest approach is to consider 

what voltage would be measured if there was nothing connected to the two terminals, and then 

what current would flow if the two terminals were connected together: 

 
4 For what to do when measuring the equivalent network in the lab, see the last section in this chapter. 
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Figure 6.6 - Measuring the open-circuit voltage (a) and the short-circuit current (b) 

With nothing5 connected between the two terminals (see Figure 6.6(a)), no current will be flowing 

around the circuit, which means there is no voltage drop across the resistor6, and if there is no drop 

across the resistor, the voltage measured on the output (known as the open-circuit voltage) must be 

equal to the voltage of the voltage source in the Thévenin equivalent network (otherwise known as 

the Thévenin voltage). 

Next, you could short-circuit the two terminals7 (see Figure 6.6(b)), and determine the current that 

flows between them (this is known as the short-circuit current).  Effectively we’re making the circuit 

shown in Figure 6.7: 

 

Figure 6.7  Producing the short-circuit current ISC 

and by Ohm’s law, the current should be the voltage divided by the resistance, which in this case is 

the Thévenin voltage (which we already know since we’ve just worked it out) divided by the 

unknown resistance. 

 
5 Note that an ideal voltmeter has an infinite resistance, so no current will flow through it.  For now, we’ll 
assume that the voltmeter used to measure the open-circuit voltage here is an ideal voltmeter. 

6 Applying Ohm’s law to the resistors, V = IR, and if I (the current through the resistor) is zero, then V (the 
voltage across the resistor) must be zero as well. 

7 Note that an ideal ammeter has zero resistance, so there is no voltage drop across it, so the two output 
terminals are at the same voltage.  For now, we’ll assume that the ammeter used to measure the short-circuit 
current here is an ideal ammeter. 
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So we can calculate the resistance in the equivalent network just applying Ohm’s law again: 

 TH
TH

SC

V
R

I
=   (6.6) 

where RTH is the resistance in the Thévenin equivalent network, VTH is the voltage source in the 

Thévenin equivalent network, and ISC is the current that flows between the terminals when they are 

connected together (the short-circuit current). 

6.4 Norton’s theorem 
Norton’s theorem states that for any two-terminal network containing only linear components and 

fixed voltage and current sources, there always exists an equivalent network that contains just one 

fixed current source, and one resistor wired in parallel.

 

Figure 6.8 - Real and Norton equivalent network.  (With the right choice of INO and RNO, both of these networks would 
behave in the same way when the terminals A and B are connected to any other network.) 

You can determine the Norton-equivalent current INO and the Norton-equivalent resistance RNO from 

measuring the open-circuit voltage and the short-circuit current as well.  The argument goes like 

this: 

If nothing is connected to the terminals A and B, then all the current from the current source INO 

must flow through the resistor RNO, so the voltage across the resistor, which will be equal to the 

open-circuit voltage, is: 

 OC NO NOV I R=    (6.7) 

If we directly connect A to B, then the voltage at point A will be equal to the voltage at point B.  

Therefore there will be no voltage across the resistor RNO and hence no current through that resistor.  

So all of the current INO must flow between the terminals A and B, and that means that the short-

circuit current measured would be: 

 SC NOI I=   (6.8) 

From these two equations, it’s quite easy to derive that: 
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Notice that the Norton equivalent resistance and the Thévenin equivalent resistance are the same: 

they are both the ratio of the open-circuit voltage to the short-circuit current. 

Proving Norton’s theorem is simple once you’ve proved Thévenin’s theorem: the Norton equivalent 

network is linear, and therefore it must have a Thévenin equivalent network.  So anything which has 

a Thévenin equivalent network will also have a Norton equivalent network: the Norton network 

which has the same Thévenin equivalent network. 

6.5 An example of working out the Thévenin equivalent network 
This might all be clearer with an example.  Consider the network shown below: 

 

Figure 6.9  The Thévenin equivalent network for this is? 

What is the Thévenin equivalent network for this network? 

First step: determine the open-circuit voltage (the voltage with nothing connected to the terminals A 

and B).  With nothing connected across the terminals this is just a potential divider, and the output 

voltage (the voltage across the R2 resistor) is given by the standard potential divider equation: 
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so that's the Thévenin voltage. 

The next stage is to work out the short-circuit current (the current when the two terminals A and B 

are shorted together).  If you do this with this circuit, the current would be given by: 
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since with A and B at the same voltage, all the voltage V must drop across the resistor R1, and that 

results in a current V / R1 flowing through R1 and then out from terminal A and back in through 

terminal B. 
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The Thévenin resistance is then the ratio of the open-circuit voltage to the short-circuit current8: 
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Figure 6.10 - A network with its Thévenin equivalent 

It would be a good idea to get a lot of practice of this sort of analysis; it’s a common exam question. 

6.6 Determining the equivalent network resistance: a short cut 
While the approach taken above to determine the equivalent network resistance for a Thévenin or 

Norton equivalent network (determining the open-circuit voltage and the short-circuit current and 

then dividing them) works fine, there’s often a short cut you can use. 

The theory goes like this: Thévenin and Norton’s theorems only work for linear networks, and a 

linear network is one in which if you scale all the inputs by a factor k, all the outputs scale by the 

same factor k. 

So: consider a network with a Thévenin equivalent network, like that shown in Figure 6.10.  If the 

voltage V was doubled, then the voltages everywhere in the network would be doubled, and the 

currents everywhere would be doubled.  That means the open-circuit voltage would be doubled, and 

the short-circuit current would be doubled, and that means that the equivalent network resistance 

doesn’t change at all: 
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The same is true if the voltages and currents in the network are multiplied by any constant term.  So, 

consider if they are multiplied by the constant zero: all the voltage sources would become zero volts, 

and all the current sources would become zero amps, but the equivalent network resistance still 

doesn’t change9. 

 
8 You might note that this is equal to the parallel combination of R1 and R2.  This is not a co-incidence. 

9 At this point a mathematician might point out that if the short-circuit current was zero, then the equivalent 
resistance is not defined, since you can’t divide by zero.  To which an engineer might reply that instead of 
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Putting a zero volt source between two points in a network means that you are forcing the voltage 

at those two points to be equal.  In other words, it’s just like putting a wire link between them. 

Putting a zero amp current source between two points in a network means that no current at all is 

flowing through the current source.  In other words, it might as well not be there, it’s not doing 

anything useful. 

So, to work out the resistance in the equivalent network, you can replace all of the voltage sources 

with wires and remove all the current sources entirely, and then work out what the resistance would 

be between the two terminals.  In the case of the network above, this would produce: 

 

Figure 6.11  Setting the voltage source to zero 

From this you can see by inspection that the resistance between A and B (which is equal to the 

equivalent network resistance) is just the two resistors R1 and R2 in parallel. 

The technique is even more powerful in more complex networks, for example consider the network 

on the left in Figure 6.12 below: 

 

Figure 6.12  A more complex network, setting both voltage and current sources to zero 

It looks more complex than the network in Figure 6.11, and it would certainly be more difficult to 

work out the open-circuit voltage or the short-circuit current, but if all you wanted to know was the 

equivalent network’s resistance, it’s just as easy.  Set all the voltage sources to a short-circuit (a 

 
multiplying each source by zero, they could be multiplied by 10-1,000,000, which to all practical purposes is the 
same thing. 
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wire) and all the current sources to an open-circuit (remove them entirely) and the network 

collapses to exactly the same network as before10.  

6.6.1 One important consideration 

I wrote that this was a technique that could “often” be used.  It doesn’t always work, and it’s 

important to know when you can’t use it.  It often doesn’t work when there are dependent sources 

in the network. 

For example, consider the following network: 

 

Figure 6.13  A dependent source with feedback 

This network features a dependent source, which creates a voltage one hundred times greater than 

the voltage reading on the voltmeter. 

Analysis of this network shows that the open-circuit voltage is given by: 
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and the short-circuit current (when the output is at zero volts) would be: 
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and this suggests a Thévenin output resistance of: 
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10 There’s no need to consider R3, since with the current source on the left set to zero, there can be no current 
flowing through this resistor, so it might as well not be there. 
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However, if you just set the independent voltage source to zero, then the dependent voltage source 

would also be at zero volts, and looking into the terminal A, an external network would see a resistor 

of value R apparently connected to ground.  However this is not the Thévenin resistance in this case. 

The difference is due to the dependent source: as soon an external network attempts to send any 

current into the network through the resistance R, the voltage across the voltmeter, and hence the 

dependent voltage source, would change.  The dependent voltage source would no longer be at zero 

volts. 

6.7 Determining the open-circuit voltage: a short cut 
If you are faced with the network shown in Figure 6.12 above with and asked to derive its 

equivalent, then while the equivalent network resistor is easy to determine, what about the open-

circuit voltage? 

The easiest approach here is to take advantage of the fact that the network is linear, and use 

superposition11.  Superposition allows us to consider each source separately, and then combine the 

results.  Here, that would mean first setting I1 and I2 to zero, which reduces the network to: 

 

Figure 6.14  More complex network with only the voltage source considered 

Setting the current sources to zero (which effectively means removing them from the network 

entirely) reveals a potential divider, and an output voltage of: 
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Next, consider just the first current source I1, setting the voltage source and second current source 

to zero (noting again that a zero voltage source is equivalent to a wire, and a zero current source is 

equivalent to an open circuit).  This reduces the network to: 

 
11 See the chapter about linearity and superposition for more details on this point. 
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Figure 6.15  More complex network with only one current source considered 

and this suggests an output voltage of zero, since all the current would flow through the wire that 

used to be the voltage source, rather than the two resistors R1 and R2.  With no current through R2, 

the voltage across it (which is the output voltage) will be zero. 

Finally, consider the second current source only: 

 

Figure 6.16  More complex network with the other current source set to zero 

Here the current from I1 will split, with a proportion R1 / ( R1 + R2 ) going through R2, and a proportion 

R2 / (R1 + R2 ) going through R1
12.  That means the output voltage is: 
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Using the principle of superposition, the total output voltage for the whole network is: 
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and this is often easier than trying to solve the whole network at once. 

 
12 See the note on resistor networks for more information on where this result comes from. 
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6.8 Determining the equivalent network in the lab 
As well as speeding up the analysis of circuits, Thévenin’s theorem can be very useful in the lab.  

Determining the equivalent network for something like an amplifier allows you to determine what 

will happen when that amplifier is connected to any particular load. 

However, there’s a catch: while it’s usually possible to measure the open-circuit voltage between 

two points with reasonable accuracy, measuring the short-circuit current can introduce some 

practical problems: it usually isn’t a good idea to short-circuit the outputs of a network.  Amplifiers in 

particular tend to get very hot if you do that, and they are only specified to work with a certain 

minimum load resistance.  (There is often a minimum load specified for amplifiers, otherwise they 

leave their linear region of operation, and once they start behaving in a non-linear way, you can’t 

define a Thévenin equivalent network at all.) 

Fortunately, there’s another way to do it.  Consider the following circuit: 

 

Figure 6.17 - Measuring the Thévenin resistance using a load resistor 

We can measure the open-circuit voltage (by setting RL to infinity, see above), and we also know the 

resistance of the load resistor on the output (RL in Figure 6.17), since we just put it there.  This circuit 

is now just a potential divider, so the output voltage will be given by the standard potential divider 

equation: 

 
L

out TH

TH L

R
V V

R R
=

+
  (6.20) 

where again I’ve used the symbols VTH as the Thévenin voltage, RTH as the Thévenin resistance, and 

RL as the load resistance that we’ve connected to the output terminals.  Measure the output voltage, 

and a bit of algebra reveals that: 
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If you’re using a variable resistor as the load resistor RL, there’s an even easier way: consider what 

happens if you adjust the load resistor until the output voltage Vout is exactly one-half of the open-

circuit voltage VTH: 
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If you can adjust the load resistance until the output voltage is one-half of the open-circuit output 

voltage (the output voltage with no load connected), then at that point, the load resistance will be 

equal to the Thévenin resistance. 

Unfortunately some amplifiers13 have a very low output resistance (Thévenin resistance), and don’t 

like driving equally low resistance loads since this would exceed the maximum current they can 

supply, so you have to use the technique described in equation (6.21) with the load resistance rather 

higher than the output resistance. 

6.8.1 The recommended method for determining equivalent networks in the lab 

While simple, the technique described above is not the recommended approach if you have a bit 

more time and want to get a more accurate estimation of the equivalent network.  There’s a better 

way, which also avoids the practical problem that it’s impossible to determine the open-circuit 

voltage directly, since all real voltmeters have a finite resistance. 

Consider the equivalent network of any provided unknown system, connected to a variable load 

resistor.  I’ll assume here the most common case in the lab, which is when one terminal of the two-

terminal network is grounded (connected to zero volts), and only consider the other one (called the 

output here). 

 

Figure 6.18  Determining the equivalent network in the lab 

The voltmeter is measuring the mid-point of a potential divider, with the equivalent voltage source 

VTH (the open-circuit output voltage) driving a series combination of the equivalent output resistance 

RTH (the output resistance) and the load resistance RL.  Re-drawn (and without the ammeter, since 

you don’t really need it: you can work out the current knowing the voltage across the voltmeter and 

the resistance RL), it looks more like the familiar potential divider: 

 
13 For example the output of an op-amp amplifier. 
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Figure 6.19  A potential divider version of the lab-measurement circuit 

The voltage measured by the voltmeter is therefore given by: 
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and the current through the load resistance is: 

 TH

L TH L

VV
I

R R R
= =

+
  (6.24) 

Eliminating RL from these equations gives: 
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  (6.25) 

which suggests that plotting the measured values of V (on the vertical axis) against the measured 

values of I (on the horizontal axis) should give a straight line14, with a gradient of –RTH. 

 
14 Occasionally, I get asked why, if we’re plotting voltage against current, isn’t the gradient of the curve the 
resistance?  The answer: because we’re not plotting the voltage across the resistor against the current through 
the same resistor.  If we were doing that then yes, we would expect to see a straight line through the origin 
which had the resistance as the gradient.  But we’re not: we’re plotting the voltage across the source VTH 
minus the voltage across the resistor RTH against the current through RTH, and that subtraction leads to a graph 
where the resistance RTH is the negative gradient of the graph. 
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Figure 6.20  Plotting measurements to determine the equivalent network in the lab 

This is a better way to do things in practice, since it has several key advantages: 

• It does not require measurement of the open-circuit voltage, so it can be used with a real 

voltmeter with a finite resistance (you just calculate the effective load resistor to be the 

added resistor RL in parallel with the resistance of the voltmeter). 

• It does not require direct measurement of the short-circuit current, which in many cases is 

not practical due to networks being forced outside their linear range of operation (and 

potentially damaged as a result). 

• It is clear whether the network is behaving as a linear network or not: if the points plotted 

do not lie on a straight line, the network is not behaving as a linear network and no 

equivalent network can be determined. 

• It does not rely on one to two single measurements (which might have errors in them).  If 

several points are taken, and they all lie on a straight line, there can be more confidence that 

the network is behaving as expected. 

6.9 Summary: the most important things to know 

• Linear two-terminal networks can be replaced with simple equivalent network consisting of 

a voltage source and series resistor (Thévenin) or current source and parallel resistor 

(Norton). 

• The Thévenin voltage is the open-circuit voltage; the Norton current is the short-circuit 

current.  In both cases the resistor is the ratio of the open-circuit voltage to the short-circuit 

current. 
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