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Prerequisite knowledge required: Diodes, Ohm and Kirchhoff’s Laws 

5.1 Introduction and definitions 
Many electronic circuits have more than one input, and in these cases the output can be a complex 

function of all of the inputs, and difficult to work out.  However, in there is a short-cut that can be 

used in many situations which can make the output much easier to calculate (or at least 

approximate).  This is the principle of superposition and it’s the subject of this chapter. 

The circuits in which this short-cut can be taken are known as “linear circuits”.  It’s important to be 

clear about what is meant by “linear” in this context: a DC circuit is linear if the output y is related to 

the inputs x1, x2, x3 by a formula of the type: 

 
1 1 2 2 3 3 ... i i

i

y c x c x c x c x= + + + =   (5.1) 

where c1, c2, etc are constants (note that these inputs and output can be either currents or voltages 

or a mixture of both – for example Ohm’s law is linear since with an input current and output 

voltage, Ohm’s law gives output = input * resistance). 

A couple of consequences of this definition are worth noting: 

• If all inputs are increased by a factor of k, then the output will also be increased by the same 

factor k 

• The output when all inputs are present is equal to the sum of the outputs when each input is 

present with all other inputs set to zero. 

This last consequence leads to the principle of superposition: “for any linear circuit with multiple 

inputs, the output resulting from a number of independent inputs is equal to the sum of the outputs 

produced by each independent input taken in turn.” 

For example, consider a circuit with two inputs, A and B.  If the output is a linear function of A and B, 

then the output when both A and B are present is equal to the output when A is present and B is 

zero plus the output when B is present and A is zero. 

5.1.1 A mathematical aside 

For superposition to work, it can be shown that there is only one operation that a DC circuit can do 

on an input to create the output: multiply the input by a constant1.  Anything else that a circuit does 

(for example adding a constant or squaring the input voltage) means that the circuit is not linear, 

and hence that the sum of the output with two different inputs will not be equal to the output when 

the input is the sum of the inputs. 

 
1 For AC circuits (in which the voltages are functions of time) there are a few more possible operations that 

retain the property of superposition: differentiation, integration and introducing a time delay. 



For example: consider a circuit with two inputs which produces an output by adding one volt to the 

sum of the inputs to form the output.  This is not a linear circuit, as the output cannot be expressed 

in terms of the inputs using equation (5.1).  The behaviour of the equation can be expressed 

mathematically as: 

 = + +1 2 1outV V V   (5.2) 

The result from having an input of V1 present when V2 = 0 is: 

 = +_1 1 1outV V   (5.3) 

and the result when V1 = 0 but V2 is present is: 

 = +_2 2 1outV V   (5.4) 

In this case adding the outputs from the input voltages VA and VB would be: 

 ( ) ( )= + + + = + +1 2 1 21 1 2outV V V V V   (5.5) 

However, the output from having both inputs present at the same time is: 

 ( )= + + = + +1 2 1 21 1outV V V V V   (5.6) 

which is clearly not the same thing.  Superposition is not working for this non-linear circuit. 

However, consider a circuit that instead of adding one volt, multiplies the sum of the inputs by a 

factor of two.  Then the result from only having the input V1 is: 

 = _1 12outV V   (5.7) 

and the result from only having the input V2 is: 

 = _2 22outV V   (5.8) 

so that in this case the sum of the outputs for each input in turn is: 

 ( ) ( )=  +  =  + 1 2 1 22 2 2 2outV V V V V   (5.9) 

For this circuit, the output from having both inputs present at the same time is: 

 ( )=  + =  + 1 2 1 22 2 2outV V V V V   (5.10) 

and this time these two are equal, so this is a linear circuit (and the output can be expressed in terms 

of equation (5.1)). 



5.2 Superposition and linearity in circuits 
At the risk of over-emphasising this point: the principle of superposition only applies to linear circuits 

(and a linear circuit is one in which increasing all the inputs by a factor of X also increases the output 

by a factor of X). 

For example, consider a circuit with a voltage source, a resistor and an ammeter measuring the 

current, something like this: 

 

Figure 5.1  Simple circuit with voltage input and current output 

Define the voltage source as the input, and the current measured by the ammeter as the output.  

Then as long as the ammeter is ideal (so it has zero resistance) we can apply Ohm’s law, and write: 

 
V

I
R

=   (5.11) 

This is a linear system, since it can be expressed in terms of equation (5.1) with the constant c1 equal 

to 1/R.  Doubling the input will produce an output current I2 which is double the original current I: 

 2

2
2 2

V V
I I

R R
= = =    (5.12) 

However, suppose that the element in the circuit is not a resistor, but a diode.  Then the current 

flowing would be given by2: 

 0 exp 1
eV

I I
nkT

  
= −  

  
  (5.13) 

which is not in the form of equation (5.1), and now doubling the input (the voltage) results in a 

current of: 
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  (5.14) 

 
2 This is the Shockley diode equation, for more details see the introduction to diodes. 
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and this is most definitely not equal to 2 I .  The circuit is no longer linear: diodes are non-linear 

devices, so the principle of superposition does not apply here.  This makes circuits including diodes 

much harder to analyse. 

5.3 Circuit analysis using superposition 
Just how useful this principle is can probably best be shown by doing an example with and without 

it.  Consider the circuit shown below, where you want to know the current through the resistor R1: 

 

Figure 5.2  A linear circuit with three sources and four nodes 

Doing this without superposition would require solving the circuit, which requires several steps.  For 

example, labelling the nodes not at ground in the circuit A, B and C (as shown in the figure above) 

allows us to write three equations in these three unknowns. 

First, note that V1 and V2 define the potential between two of the nodes, so: 

 1B A V− =   (5.15) 

 2C V=   (5.16) 

and applying Kirchhoff’s current law to node B (and Ohm’s law to R1 and R3) reveals: 

 1

3 1

A B C
I

R R

−
+ =   (5.17) 

Then these three equations can be solved by substitution.  First eliminate A between equations 

(5.17) and (5.15): 

 1
1
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+ =   (5.18) 

and then eliminate C between equations (5.16) and (5.18): 
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which after a bit of tedious algebra reveals that: 
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  (5.20) 

so the current through the resistor must be: 
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5.3.1 Or by superposition… 

Doing the same calculation by superposition is somewhat easier.  The idea is that we can calculate 

any linear parameter of the circuit (in this case the current through the resistor R1) one independent 

source at a time, and then just add up the answers. 

In this case, first consider V1, and set the sources I1 and V2 to zero.  This effectively converts the 

circuit into: 

 

Figure 5.3  A linear circuit with only one source considered 

In this case the current through R1 is easy to determine: the equivalent resistance from one side to 

V1 to the other is just R1 + R3, so the current through R1 must be IV1 = V1 / (R1 + R3). 

Next, consider the current source only, setting the two voltage sources to zero.  The circuit has 

effectively become: 
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Figure 5.4  A linear circuit with only the current source considered 

The current from I1 will be split between R1 and R3, and the standard formula for current through 

two parallel resistors gives that the current flowing through R1 must be: 
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+
  (5.22) 

Finally considering the second voltage source only, setting the other two sources to zero, gives the 

effective circuit: 

 

Figure 5.5  A linear circuit with only the second voltage source considered 

Here the current flowing through R1 is clearly: 
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The principle of solution tells us that the total current through the resistor R1 must be the sum of 

these three currents.  All we need to do is be careful that we add up all the currents going in the 

same direction, which is an issue here, since V1 and I1 send current through R1 from left to right in 

the diagrams above, whereas V2 sends current through from right to left.  So the total current 

flowing from left to right is: 
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  (5.24) 

Not only is the calculation easier, but it’s led to a neater way of expressing the result3. 

5.4 Linearity and small signals 
Linear techniques (and hence superposition) are so useful and easy to use that they are commonly 

used to produce approximations to the performance of non-linear circuits as well.  This technique is 

called the small-signal approximation. 

The idea is that even if a circuit is non-linear, provided the input doesn’t change very much, then for 

the small changes in the output caused by small changes in the inputs the circuit behaves 

approximately like a linear circuit.  (This is often useful in practice, as all real circuits are non-linear 

to some extent, and yet circuits are designed to be used with only small signals.) 

For example, consider the following circuit: 

 

Figure 5.6  A non-linear potential divider circuit 

The circuit is clearly non-linear: double the input and while the output will increase slightly it 

certainly won’t double; for most diodes it’s likely to stay between 500 mV and 800 mV for a very 

wide range of values of Vin. 

If you plot the response of this circuit (Vout as a function of Vin) you get a graph something like this: 

 
3 I’ll leave the task of showing that the expressions derived in the two cases (with and without superposition) 
are indeed equivalent as an exercise for the interested reader. 
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Figure 5.7  Non-linear response of a diode-resistor potential divider 

which is clearly non-linear4.  But what if you were only interested in signals that were around four 

volts?  Looking at just this section of the graph, we’d notice that around this operating point, the 

graph can be closely approximated by a straight line: 

 

Figure 5.8  Linear approximation to non-linear response for the diode-resistor potential divider 

Now supposing that the input signal Vin was expressed as: 

 4in inV V= +   (5.25) 

where ΔVin is a small change in the input voltage; in other words ΔVin is the (small) difference 

between the actual input and four volts: 

 4in inV V = −   (5.26) 

And suppose that the output was expressed as: 

 0.72out outV V= +  (5.27) 

in other words ΔVout is the (small) difference between the actual output and 0.72 volts. 

  0.72out outV V = −   (5.28) 

 
4 A linear response would be a straight-line going through the origin on a graph of input against output. 
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The straight line approximation to the non-linear response at this point can be written as: 

 ( )mV 680 10out inV V= +    (5.29) 

which can also be written (using equation (5.25)) as: 
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0.72 0.04

0.72 0.04

0.04

out in

in

out in

out in

V V

V

V V

V V

= +  + 
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− = 

 = 

  (5.30) 

This now looks like a linear response: any small change in the input ΔVin is multiplied by a constant 

factor of 0.04 to become a change in the output voltage ΔVout.  So this non-linear circuit does behave 

in a linear way provided it is the small changes in the input and output voltage that are considered, 

and not the entire input and output voltages. 

We can show this working by considering an input that is the sum of two small voltages (plus the 

offset of 4 volts).  So we can write: 

 1 24 4in inV V V V= + = + +   (5.31) 

Because we are approximating the characteristic as a straight line, we could then write: 

 

( ) ( )

( )
1 2

1 2

1 2

mV 720 720 10 720 10

10

10 10

out out in

out

V V V V V

V V V

V V

= +  = +  = +   + 

 =   + 

=  + 

  (5.32) 

and in this sense the system is called linear.  Provided the voltage across the device doesn’t move 

very far from one point (known as the operating point), the system can be approximated to be 

linear, and two small deviations from the operating point produce at the output the sum of the 

deviations caused by both inputs separately. 

This sort of approach is very common in circuit analysis, and is called a small-signal model.  I’ll say a 

bit more about it. 

5.5 Small-signal models 
Just about any circuit is linear (once any constant DC offsets are removed) if the input signals are 

small enough; conversely just about any circuit is non-linear if the input signals are too large.  It’s 

very common when simulating non-linear circuits to first analyse the circuit at DC to work out what 

the average DC levels at each point in the circuit are (this is known as the bias point and this 

calculation has to be done using the full non-linear equations describing each component: this can 

be difficult).  Having done this, a linear small-signal model can then be produced, and this is then 

used to work out the response of the system to the small signals it will be asked to deal with (which 

is much easier). 



The results obtained are only approximate, but it’s an approximation which is often accurate enough 

for small signals, especially when the circuit has been designed to be almost linear. 

For example, consider the non-linear potential divider considered earlier (see Figure 5.6). 

Since the current through the resistor and the current through the diode must be equal, we can use 

the Shockley diode equation with Ohm’s law and Kirchhoff’s current law to reveal the relationship 

between Vout and Vin for this circuit: 

 1
outeV

in out kT
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V V
I e

R

 −
= − 

 
  (5.33) 

This is not a particularly easy equation to work with, and finding the output voltage Vout for any given 

input voltage Vin has to be done using numerical iteration techniques.  It’s time-consuming, and not 

something you want to have to repeat every time the input voltage changes slightly. 

However, once we know the value of Vout for one particular value of Vin, we can express the 

relationship between any small changes in Vin and Vout using linear small-signal methods.  The first 

step is to find a suitable approximate linear model, and for that we differentiate equation (5.33) with 

respect to Vin.  This reveals: 
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  (5.34) 

This produces the gradient of the plot of the Vout / Vin characteristic of this circuit.  I’ve written it this 

way so that it can easily be compared to the standard formula for a potential divider: 
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  (5.35) 

which when differentiated, would give: 
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+
  (5.36) 

Effectively, for small changes in Vin and Vout the resistor-diode potential divider is behaving like a 

standard potential divider, only with the diode having an effective resistance at this operating point 

of: 
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  (5.37) 

This is known as the dynamic resistance of the diode: it’s the ratio of the small change in voltage 

across the diode to the small change in current through it, and it determines how the diode behaves 

around this operating point. 

Now for small changes ΔVin and ΔVout, we can approximate: 
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  (5.38) 

and provided that the changes in the voltages are small, the right-hand-side of this equation can be 

considered to be a constant, with a value determined by the voltage and current at the operating 

point. 

So a change in Vin of, say, 1 mV would be expected to produce a change in Vout of: 
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  (5.39) 

Putting in some typical values (IS = 2 nA, R = 1k, T = 290 K and Vout = 0.6 Volts), reveals that:  
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  (5.40) 

and since this is assumed to be a linear system (at least for small values of input voltage) we can 

immediately conclude that the change in output for a change in input of 2 mV would be 944 pV, and 

so on. 

That’s a lot easier than going back to the full non-linear equation (5.33) and trying to solve it again 

for a slightly increased value of Vin. 

5.6 Summary: the most important things to know 

• The principle of superposition allows circuits with multiple sources to be more easily 

analysed by considering the effect of each source in turn and summing these effects. 

o Superposition only applies to linear circuits, where the output is related to the 

inputs by an equation of the form 
1 1 2 2 3 3 ... i i

i

y c x c x c x c x= + + + =  

• Some non-linear circuits can be considered to be approximately linear for small changes in 

the inputs and outputs, using the dynamic resistances of the components. 

o Dynamic resistance is the ratio of the change in voltage across a component to the 

change in current through the component. 


